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PREFACE 7

Preface

This is a set of lecture notes for CS363/0OR3/9: Combinatorial Optimization that 1
taught in Winter 1993. The notes were scribed by students in the class and reviewed me.
These notes are not ment to be in the polished form, and probably contain some errors
and ommisions. In particular, some references to the literature are missing. The reader is
directed to the relevant books and research papers for a formal treatment of the material.

These notes are intended as an aid in teaching and for studying advanced work in the
area. Much of the material covered in these notes is very recent and is available in recearch
papers only. I plan to update the notes each time the course is tought. I would like to know
of any errors and ommisions so that they can be corrected in the future.

I would like to thank the students who took the course and scribed. I would also like to
thank my teaching assistants, Sherry Listgarten and Robert Kennedy, for their help with

the class in general and with these notes in particular.



LECTURE 1

The Stable Marriage and Stable Roommates Problems

Scribe: Jeffery D. Oldham

The stable marriage and network stability problems introduce combinatorial optimiza-

tion, which involves discrete, as opposed to continuous, optimization.

1. The Stable Marriage Problem

1.1. Definition of the Stable Marriage Problem. The stable marriage problem
consists of matching members of two different sets according to the members’ preferences
for the other set’s members. For example, medical school students serve as residents at
hospitals after graduation. Under the National Intern Matching Program which matches
residents (interns) and hospitals, the students submit rankings of preferred hospitals, while
hospitals submit rankings of preferred students. Using the rankings, each student is assigned
to one hospital [22].

The input to the stable marriage problem consists of:

e a set M of n males,
e aset F of n females,
e for each male and female, a list of all the members of the opposite gender in order

of preference.

Note that the size of the input is ©(n?), since each of the 2n preference lists has length n.

A marriage is a one-to-one mapping between males and females. We want to find a stable
marriage, i.e., one in which there is no pair m f such that f prefers m to her current partner
and m prefers f over his current partner. Two partners are stable if they are matched in

some stable marriage.

ExamPLE 1. Consider the following preference lists for the sets M = {a,b,c} and F =
{A,B,C}.
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a: ABC A: bac
b: ABC B: acb
c: BCA C: abc

Male a prefers female A over females B and C', and female A prefers male b. The marriage
{aC,bB, cA} is not stable because a prefers B over his current partner C' and B prefers a

over her current partner b. The marriage {aB,bA, cC'} is stable.

1.2. The Gale-Shapley Algorithm. The Gale-Shapley algorithm [13], given prefer-
ence lists for both males and females, returns a stable marriage by having any unmatched
male propose to females in the order of his preference lists until a female accepts. (See
Figure I.1.) A female receiving a proposal accepts if she is not matched or she prefers the

proposer over her current partner. In the latter case, the partner becomes single.

while there exists an unmarried male m do
m proposes to the first female f on his preference list to which he has not proposed
if f is unmarried then match m and f
else if [ prefers m to her current match m’ then
make m’ single
match m and f
else m remains single

Ficure 1.1. Gale-Shapley Algorithm.

EXAMPLE 2. Suppose we desire a stable marriage for the preference lists

a: BAC A: acbh
b: BAC B: bac
c: ACB C:cab

The algorithm yields the stable marriage {aA,bB, cC} by ileraling these steps.

(1) a proposes to B, the first female on his preference list, and she accepts because she
is single. The set of matches is {aB}.

(2) b proposes to B, the first female on his preference list, and she accepts, breaking her
match with a, because she prefers b over a. The set of matches is {bB}.

(3) Since a is now unmatched, a proposes to A, the next female on his list. With A
accepting because she is not matched, the set of matches is {aA,bB}.

(4) Since c is the only unmatched male, ¢ proposes to A, the first female on his preference
list. She rejects the proposed malch because she prefers her currenl partner a. The
set of matches is {aA,bB}.

(5) ¢ proposes to C', who accepts because she is not matched. Since all males are now

matched, the algorithm terminates with matches {aA,bB,cC'}.

The order of choosing unmatched males does not affect the algorithm’s result.
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It is easy to see that the algorithm takes O(n?) time.

1.3. Correctness. We now prove the algorithm terminates, yielding a marriage. The
algorithm terminates if all males get married. Because a marriage is a one-to-one function
between males and females, all females will then also be married. Suppose a male is not
matched. Then a female is not matched. Since the male’s preference list contained all
the females, he proposed to her during the algorithm’s execution. Since the algorithm
guarantees matched females remain matched, she is matched. =< All males are matched,
and the algorithm terminates.

The resulting marriage M is stable. Suppose the marriage is not stable because male
m and female f prefer each other to their current partners M(m) and M~'(f). Since m
prefers f over M(m), he proposed to her before proposing to M(m). Female f rejected
m at some point because m married M(m), not f. Since a female’s partner only becomes

more preferable, f does not prefer m over M~!(f). =<« The marriage is stable.

1.4. Male Optimality. Now we show that the stable marriage produced by the Gale-
Shapley algorithm is male-optimal. That is, there is no stable marriage in which any male
matches a female he prefers more than the one assigned in this stable marriage.

Let stable marriage M’ have a match mf’, when the algorithm yields stable marriage
M with match mf. Assume m prefers f' # f to f, so the result M of the Gale-Shapley
algorithm is not male-optimal. The preference list for m has the form ... f'... f.... Because
m prefers f' to f and mf' ¢ M, [’ rejected m for another male m’ # m during the
execution of the Gale-Shapley algorithm. Without loss of generality, assume this rejection
is the first rejection of a stable partner. Male m’ has no stable partner whom he prefers to
J' because f’s rejection of m was the first rejection of a stable partner. Since f’ matched
m, not m’ in marriage M’, m"’s spouse M'(m’) # f', and his preference list has the form
L fo o MY(md) ... =< Marriage M’ is not stable because m’ and f’ prefer each other to
their current partners. m’ prefers f’ over his spouse M'(m’), and f’ rejected m for m’.

The male-optimal marriage is unique since two marriages must differ and some male must
do worse in one of the two. Consequently, the algorithm always produces the same result
regardless of the order in which the unmarried males are chosen.

In a female-pessimal stable marriage, each female has the worst partner she can have in

any stable marriage.
LEMMA 1. The Gale-Shapley algorithm yields female-pessimal stable marriages.

Proof. Assume marriage M be the male-optimal stable marriage, and let marriage M’ # M
be a female-pessimal stable marriage. Suppose female f matches male m in marriage M

and m’ in M’. Because M is male-optimal, m prefers f over all other spouses possible in any
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stable marriage, while, because M’ is female-pessimal, the preference list for f has the form
..m...m'.... Marriage M’ is not stable because m prefers f to his spouse M'(m) # f

and f prefers m to her spouse. m

2. Introduction to Network Stability

After introducing the stable roommates problem, we reduce it to a network stability

problem, using ideas from Stanford graduate Ashok Subramanian [42].

2.1. The Stable Roommates Problem. The stable roommales problem, also called
the stable matching problem, generalizes the stable marriage problem to matches within the

same set and partial preference lists. The problem inputs consists of:

e aset S and

e for every member of S, a partial preference list.

Each set member is matched with another member so the matches are stable. Since the
preference lists are partial, one member’s preference list need not contain every other set

member. A matching may be unstable in three ways:

e two unmatched members may be acceptable to each other,
e a matched member may prefer an unmatched member over its current partner, or

e two matched members may prefer each other over their partners.

A matching is stable if it is not unstable. The stable marriage problem may be reduced to
the stable roommate problem by defining S as the union of the male and female sets and
using the same preference lists.

Given a problem instance, a stable matching does not necessarily exist.

EXERCISE 1. Give an example of a stable matching problem with |S| = 4 and complete

preference lists that has no solution.

2.2. Network Definitions. A network is a directed graph with vertices representing
gates and arcs representing wires. Incoming and outgoing arcs are ordered. Each gate has
a type and an associated equation using incoming arcs. For example, an and gate gy may
have equation g; A g, where g; and g, are gates with arcs pointing to go. An inpul galeis a
node with in-degree zero and out-degree one. An oulpul gate is a node with in-degree one
and out-degree zero. At most one output of an adjacency preserving gate changes if one
input changes. For example, not gates are adjacency preserving.

A configuration, an assignment of truth values to every arc, is stable if all the gate
equations are satisfied. Note configurations, i.e., assignments, not networks, are stable.

Unstable networks exists: consider a not gate with its output leading to its input.
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An X-gate has two inputs and two outputs. It returns (0,0) if both inputs match and
its inputs otherwise, i.e., outl = inl -in2 and out2 = inl -in2. See Figure 1.2. X-gates

are adjacency preserving. The networks we consider will contain only X, input, and output

in1—>><—>out1
in2—= —= out2
|0,1]1,0]1,1
10,1[1,0]0,0

gates.

inl, in2 |0,
0

0
outl, out2 0

?

Ficure 1.2. The X-gate.

A path in a network containing X-gates is a sequence of distinct gates connected by arcs
where, if an X-gate is entered using the gate’s first input, the arc from the gate’s first output
is used. Similarly, if an X-gate is entered using the gate’s second input, the arc from the
gate’s second output is used. A cycle is a path where the first and last gates are the same.

A snake is a maximal path, i.e., a cycle or a path from an input to an output.

THEOREM 1. An Xgate network configuration with no cyclic snakes and all inputs set to
1 is stable iff the following three conditions hold:

(1) the values along the snakes form a sequence of 1’s followed by a (possibly empty)
sequence of 0’s,
(2) snakes drop (change values from 1 to 0) in pairs, and

(3) if two snakes with values of 1 meet, they both drop.

Proof.
= The three conditions follow directly from the definition of an X-gate.

(1) Because the inputs are set to 1, the snake values start at 1. Inspecting the truth
table for X-gates reveals an X-gate’s output is 0 whenever its input is 0.

(2) One snake drops only when both inputs are 1. Again using the X-gate truth table,
both outputs become 0.

(3) Use the X-gate truth table. A

< Using the three conditions, we show the X-gate’s outputs match its truth table for any
possible input. Since all possible network gate equations are satisfied, the configuration is

stable. See Figure [.3. m
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1]

X

%O

%O

Using the first condition, the outputs must be 0.

17

X

%O

%1

Using the first condition, the first output must be 0.
The second output must be 1 using the second condition.

1—
00—

X

%1

%O

This case is symmetric with the previous case.

1—
1—

X

%O

%O

The third condition forces both outputs to drop.

Ficure 1.3. The Three Conditions of Theorem 1 Imply Stability.
2.3. The Stable Roommate Problem and Network Stability. We reduce the

stable roommate problem to the network stability problem using a network of input, X-

, and output gates. Before reducing, we preprocess the (partial) preference lists so one

person will accept another as a roommate only if the latter will also accept the former as

a roommate. If person a’s preference list contains person b, but person b’s preference list

does not contain person a, b is removed from a’s list.

To reduce a stable roommate instance to a network stability instance,

(1) Create an X-gate {a, b} for each pair {a,b} of mutually acceptable roommates.

2) Create an input a for each a € S.

4

(2)
(3) Create an output a for each a € S.
(4)

For each member « in S, wire from the member’s input to the X-gate for ¢ and its

most preferred roommate. Using the output from this X-gate, wire to the X-gate for

@ and its next most preferred roommate, and so on. End the snake at a’s output.

(5) Assign all inputs to 1.

ExaMmpPLE 3. We construct a network for the stable marriage instance in example 1.
a: ABC A: bac
b: ABC B: acb
c: BCA C: abc

See Figure 1.4.

In the next lecture, we will show stable configurations correspond to stable matchings.
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Vo o
A’ B’ C

Ficure 1.4. An X-Network for a Stable Marriage Instance.



LECTURE 1II

The Stable Roommates Problem and Network Stability

Scribe: Jeffrey D. Oldham

Today’s lecture shows a one-to-one correspondence between the stable roommates prob-
lem and stable configurations of a subset of X-networks. Using the correspondence between
the problems and a linear time algorithm testing for stability of these networks, stable
matchings are found. Most of the material presented can be found in the technical re-

port [42], while the conference article [32] discusses complexity issues.

1. The Stable Roommates Problem and X-Network Stability

The correspondence between a stable roommates instance and an X-network is defined
in the previous handout. After proving the correspondence is one-to-one, we will show how

to determine the stability of the X-network and, thus, solve the stable roommates problem.

THEOREM 2. If X-network N corresponds to stable roommates instance I, there is a
one-to-one correspondence between the stable matchings in I and stable configurations in

N.

Proof.

= Using the stable matching M, we construct a configuration of snakes. If ¢ and b are
matched, the snakes for ¢ and b drop at X-gate ab. Use the snake theorem to show the
configuration is stable. Each snake consists of 1’s followed by 0’s. Snakes drop only if two
members are matched, so they drop in pairs. To show the third condition holds, assume
two snakes for members x and y cross but do not drop. By the construction of the network
where snakes follow the order of a member’s preference list, they prefer each other to their

partners (if these exist) so the matching is not stable. =< A

15
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< To map the stable configuration into a stable matching, we match a and b if and only
if the two corresponding snakes drop at the same gate. To show the resulting matching is
stable, we show all unmatched pairs ¢ and b are not stable. First, assume a and b accept each
other. Since ¢ and b are not matched and the snake theorem’s third condition guarantees
both snakes drop if both inputs to the X-gate ab are 1, at least one input must have value 0.
Since snakes only drop at matches, a or b must be matched earlier and a and b are unstable.

Second, if @ and b do not accept each other, their pairing is unstable. m

2. Adjacency-Preserving Circuits and X-Networks

If one input of an adjacency-preserving gate changes, at most one output changes. If
one input of an adjacency-preserving circuil changes, at most one output changes. If a cir-
cuit, e.g., an X-network, contains only adjacency-preserving gates, the circuit is adjacency-

preserving. Copy gates are not adjacency-preserving.
LEMMA 2. The number of inputs to an X-network equals the number of outpuls.

Proof. Define a node’s weight to be the number of incoming arcs minus the number of
outgoing arcs. Because every X-network arc connects two gates, it contributes zero to the
network’s weight, which is, thus, zero. X and not gates also have zero weight, while input

and output gates have weights —1 and +1. The claim follows. =

3. Network Stability and Simplification

Given an X-network with all inputs initially specified, we wish to determine if there exists
a stable configuration. Before presenting the linear time algorithm, we present a network
simplification process.

Given an input gate preceding another gate, we replace the two gates with simpler equiv-
alent gates. See Figure IL.5.

The simplification rules guarantee the following properties:

(1) A simplified network has a stable configuration iff the original network has a stable
configuration.

(2) The simplified network has fewer arcs then the original network.

(3) If all inputs of the original network have assigned values, then the same holds for
inputs of the simplified network.

(4) If an X-network has an assigned input, then a simplification rule applies.

Given an X-network with all inputs initially specified, network stability is determined by

the following algorithm.
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« ’: O simplify T

00— — simplify 00—
) o -
O—
1 @—= — simplify
« 00 simplify discard

Ficure 11.5. The network simplification rules. The input value  may be
either 0 or 1.

replace l>. .X_>

Ficure I1.6. Replacing an arc with input and output gates.
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First, all inputs are eliminated by repeatedly applying the simplification rules until the
network has no inputs and therefore no outputs. This process takes linear time since each
simplification rule decreases the number of arcs.

The simplified network N, having no inputs and no outputs, has only cycles. After
forming a new network N’ by replacing an arc with input and output gates (see Figure 11.6),
assign the value 0 to the input gate. If, after further simplifying the network, the output
has value 0, we could assign the arc value 0 in the network N. Otherwise, try assigning 1
to the input gate in network N’. If the output has value 1, we could assign the arc value
1in N. Otherwise, we cannot assign either 0 or 1 to the arc in N and have an unstable
configuration. Continue replacing arcs until the the network becomes empty or an unstable
configuration is discovered.

To ensure the algorithm executes in linear time, use the standard trick of simplifying the
networks with 0 and 1 assigned to the input gate in parallel, stopping when one simplification
succeeds. If one of the computations succeeds, the amount of work done by the successful
computation is linear in the number of arcs removed by this computation, and the amount
of work done by the other computation is at most that of the successful one. If both of the
computations fail, the amount of work done by each one is linear in the circuit size and the
algorithm terminates.

To determine a stable configuration of the original network, reverse the simplification
process, assigning arcs their stable values.

We claim the algorithm is correct. Because the simplification steps preserve stability, we
only need to show arc replacement preserves network stability in networks with only X and

not gates.

LEMMA 3. Suppose X-network N has no inputl or oulpul gales bul does have a stable
configuration. Then assigning the boolean value x to arc e in the algorithm succeeds if and

only if N has a stable configuration with arc e assigned x.

Proof. = We need only consider a stable configuration of network IV where arc e is assigned
z. If we cut e and assign the new input and output to z, the configuration remains stable.
Suppose we change the value on the input to z. By assumption, we know that this forces
the output value to change to z. Because the X-network gates are adjacency-preserving,
the only arc values affected are those on the path from the input to the output. Thus, the
resulting configuration is stable. A

< Again, use the adjacency-preserving property. m

COROLLARY 1. For a stable roommale problem instance, the set of unmatched members

is the same for any stable matching.
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Proof. After eliminating all the input gates in the X-network N corresponding to the
instance, all the output gates are also eliminated. The output gates’ values are completely
determined. An unmatched member has output gate value 1, and a matched one has the

value of 0. m



LECTURE III

The Maximum Flow Problem

Scribe: Sanjeev Khanna

1. Network Flows

1.1. Flows and Pseudo-flows. A network G = (V,E) is a directed graph with two
distinguished nodes, namely a source node s and a sink node t. A nonnegative capacity
u(v, w) is associated with every arc (v,w) € E. If (v,w) ¢ E, we define u(v,w) = 0. We
use n and m to denote |V| and |E| respectively.

A flow on a network GG is a real-valued function f : V x V — R which satisfies the
following three properties :

e Antisymmetry: f(v,w)= —f(w,v) Yv,w e V.
If f(v,w) > 0, we say there is a flow from v to w.
e Capacity constraints: f(v,w) < u(v,w) Vv,w € V.
o Flow conservation: ), .y f(v,w)=0 Yv eV —s,t.
If f(v,w) = u(v, w) we say the flow saturates (v, w).

A function f that satisfies only the first two properties above is called a pseudo-flow. The
value |f| of a flow f is the net flow out of the source, )~ .\ f(s,v) or equivalently, the net
flow into the sink, 7 .\ f(v,%). A classic network optimization problem is the mazimum

Sflow problem which is the problem of finding a flow of maximum value in a given network.

1.2, Cuts. We define a cut (5,7) to be a partition of the node set V into two parts
S and 7', such that S contains s and 1" contains ¢{. The capacity of a cut (S,T) is given
by w(S,T) = 3 eswer w(v,w). A minimum cut is a cut of minimum capacity. The flow

through a cut (S,T) is defined as f(S,T) =3, cs5 per [ (v, w0).
LEMMA 4. For any flow f, the flow across any cut (S,T) is equal to the flow value.

20
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PI‘OOf. f(S7 T) = ZUES,U}ET f(U, w) = EUES,wEV f(U, w) - ZUES,wES f(U, w) = |f| - O — |f|
since Zves,wev fv,w) = 3, cv f(s,w) by flow conservation and Zves,wes flv,w) =0 by
antisymmetry. m

An immediate application of Lemma 4 is as follows.

LEMMA 5. For any flow f and cut (S,T), |f| < u(S,T).
Proof. |f| = f(57 T) = ZvES,wET f(lvv ’U)) < ZvES,wET u(v7 w) = ‘U(S, T) u

Thus the value of a maximum flow is no greater than the capacity of the minimum cut.

We later prove a theorem which states that in fact these two numbers are always equal.

1.3. Residual Networks. Given a flow f on G, we define the residual capacity function
up 1 VXV = Ras up(v,w) = u(v,w) — f(v,w). The residual network G; = (V, E;) for a
flow fis the graph with node set V, source s, sink ¢, and an arc (v, w) of a capacity u; (v, w)
for every pair (v, w) such that u; (v, w) > 0. A network flow and the corresponding residual

network are depicted in Figure I11.7. Only arcs with non-zero capacities are shown in the

figure.
6/3 5/5
S 3/2
.\ ¢
3/3
(@ (b)

Ficure 111.7. (a) The flow f on a network GG. (b) The residual network G;.

The following exercise shows how the flow in a residual network relates to the flow in the

original network.

EXERCISE 2. Let f be a flow in G and let G be ils residual graph. Show the following :
(a) A function [ is a flow in Gy iff f+ f s a flowin G.
(b) A function f is a mazimum flow in Gy iff f+ f'is a mazimum flow in G.

(¢) The flow sum f+ f in G has value |f + f'| = |f|+|f].

Thus we know that if f is any flow in G and f* is a maximum flow in G, then the value

of maximum flow in Gy is | f*] — | f].
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1.4. Augmenting Paths. Given a flow f on GG, an augmenting path is a directed path
from s to ¢ in the residual graph G ;. The residual capacity of an augmenting path is defined
to be the smallest residual capacity of any arc on that path. The path [s,w,y,z,¢] in
Figure II1.7(b) is an augmenting path of residual capacity 1. We are now ready to state

and prove a fundamental theorem about network flows.

THEOREM 3. (Maz-flow min-cut theorem) The following three statements are equiv-
alent:
(1) f is a mazimum flow,
(2) there is no augmenting path for f,
(3) |fI =u(S,T) for some cut (S,T) of G.

Proof.

(1) = (2): If there is an augmenting path P for f, then we can increase the flow value
by increasing the flow along P.

(2) = (3): Suppose there is no augmenting path for f. Let S be the set of nodes reachable
from s and let 7'=V — 5. Since s € S and ¢t € T', (S,7) is a cut. We further observe that

all arcs from S to T must be saturated and thus we have

fl= > flvw= Y u(ST).

veSweT veS,weT
(3) = (1): This follows immediately from Lemma 5. m

2. The Augmenting Path Algorithm

The Max-flow min-cut theorem forms basis of a simple iterative algorithm, called the
augmenting path algorithm. The Max-flow Min-cut theorem and the augmenting path al-
gorithm, are both due to Ford and Fulkerson [11, 12]. Figure 111.8 describes the augmenting
path algorithm.

for each arc (v,w)€ F do

flv,w) « 0;
flw,v) « 0;

While 4 a path P from s to ¢ in the residual network G; do
§  mingep{us(a)};
for each arc (v,w) € P do
F(0,0) — [(v, w) + 83
f(wv ’U) — —f(*v,w);

Ficure I11.8. The Augmenting Path Algorithm.
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THEOREM 4. The augmenting path algorithm is correct and if all arc capacities are in-
tegral, it runs in O(m?U) time, where m is the number of arcs and U is the mazimum

capacily of any arc.

Proof. The algorithm terminates only when there are no more augmenting paths and thus
the correctness of the algorithm follows by the Max-flow min-cut theorem. Since the arc
capacities are integral, the flow increases by at least one unit at each augmenting step.
We also observe that the maximum flow in the network is bounded by mU. These two
observations combined with the fact that an augmenting path can be determined in O(m)
time (using a graph search procedure like breadth-first or depth-first search), give us the
stated result. m

Thus the total time taken by the augmenting path algorithm is bounded by an exponential
function in the input size. The algorithm can take a really large number of iterations on
certain problem instances with large flow values. For example, in the network shown in
Figure I11.9, we can alternate between augmenting paths [s, z, y,t] and [s,y, z,t] and thus

take two thousand iterations to produce the maximum flow.

1000/0 1000/1 1000/1 1000/1

1000/1 1000/0 1000/1 1000/1

(@ (b) (©)

Ficure 1I1.9. (a) The initial network. (b) After augmentation along
[s,z,y,t]. (c) After augmentation along [s, vy, z,t].

The following exercise from [27] shows that if the arc capacities are irrational, then the
process of augmenting along arbitrary paths, may take infinite time to converge to the

maximum flow.

EXERCISE 3. Let r be the positive root of the quadratic equation z>+x — 1. Consider the
network shown in Figure 111.10.

The arc capacity of all the unlabeled arcs is r + 2. Clearly, the value of the mazimum
flow is 1+r+1r? = 2. Show that there exisls a sequence of augmentations such that it takes

infinite time for the flow value to converge to 2.
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sé\j/ t
J 2\

Ficure 111.10. A network with irrational arc capacities on which the aug-
menting path algorithm may take infinite time.

A useful property of the augmenting path algorithm is that when run on a network with
integral arc capacities, it always produces a maximum flow which assigns integer flows to

each arc. Such a flow is called an integral flow. Hence we have the following theorem:

THEOREM 5. (Integrality theorem) There always exists an integral mazimum flow on

a network with integral arc capacities.

3. The Decomposition Theorem

The Decomposition theorem states that every flow can be decomposed into a relatively

small number of primitive elements of the following kind :

(1) Paths P from s to ¢, with flow é: (P, 9).
(2) Cycles I', with flow §: (I, 6).
The nodes in the primitive elements satisfy the conservation constraints, except possibly
s and t. An example of flow decomposition is shown in Figure I11.11 where the flow on a

network is decomposed into three primitive elements, two paths and one cycle.

FiGure I11.11. An example of flow decomposition. (a) A flow on a network.
(b) The primitive elements of the flow.

We can state the following theorem for the decomposition of the flow in any network into

primitive elements.
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THEOREM 6. (Decomposition theorem) Any flow can be decomposed into alt most m

primitive elements.

Proof. Let f be a flow function on a network G = (V, E) and let A ={a € E: f(a) > 0}.
We denote by G* the subgraph of GG induced by the arcs in A. Repeatedly perform the

following step until there is no path from s to ¢ in G* :

Find a path P from s to ¢ in G* and set 6 = mingep{f(a)}. Reduce the flow on
each @ € P by the amount . The flow on at least one of the arcs is reduced to zero.

Remove all arcs with zero flow and add (P, 6) to the set of the primitive elements.

At the end of this process, the resulting graph, say G**, has no path from s to ¢ and thus
the net flow from s to ¢ is zero in G**. Note that at this point flow conservation holds at
every node, including s and ¢.

Next we repeat the following step to find cycles in G** until there are no more arcs left
in G**:

Select (v, w) in G**. Due to flow conservation, there must be an outgoing arc from
w in G**. Successively keep picking arcs with positive flow till we find a cycle, say
I'. Let 6 = minger{f(a)}. Reduce flow on each arc along the cycle by the amount §
and now remove all arcs on which the flow has become zero. Add (I',d) to the set

of primitive elements.

This works because flow conservation holds at every node, so if there is an incoming arc
(u,v) with positive flow, there must be an outgoing arc (v, w) with positive flow.

It is clear that each time we add a primitive element, we reduce the number of arcs by at
least one. Thus we construct a set of at most m primitive elements which together define

the given flow fon G. m

We have already seen that even on networks with integral arc capacities, augmenting
along arbitrarily chosen paths may take a very long time to converge to maximum flow.
Edmonds and Karp [8] suggested to always augment along the path of the maximum residual
capacity. We now show how the Decomposition theorem can be used to analyze this heuristic
(follows the presentation of [27]).

4

THEOREM 7. When the arc capacilies are inlegral, augmenting along paths of the maz-
imum residual capacity produces a mazimum flow, say f*, in at most O(mlog|f*|) aug-

menting steps.

Proof. By the Decomposition theorem, there must be a path from s to ¢ of value at least

|f*|/m. Thus augmenting along a path of maximum residual capacity must increase the



26 III. THE MAXIMUM FLOW PROBLEM

value of the flow by this amount. So the value of the maximum flow in the residual graph
is at most | f*| — [f*|/m = [[*|(55H).

After k augmenting steps, therefore, the value of the maximum flow in the residual graph

is no more than |f*|(™

Since the arc capacities are integral, the total number of
augmenting steps required is bounded by the least number k such that |f*|(2=)* < 1.

Using the estimate that logm — log(m — 1) = ©(=-), we get the stated result. m

The following exercise derives an alternative bound on the number of augmenting steps

needed by the Edmonds and Karp heuristic.

EXERCISE 4. Use the Decomposilion theorem to show that when the arc capacities are
integral, then augmenting along paths of the maximum residual capacity produces the max-
imum flow in alt most O(mlog|U|) augmenting steps where U denotes the largest capacity

of any arc in the network.
A path of maximum residual capacity can be found by modifying Dijkstra’s algorithm.

EXERCISE 5. Design and analyze an efficient algorithm lo find an augmenling path of

the mazimum residual capacilty in a residual network.

4. The Capacity Scaling Algorithm

We now present a somewhat different approach to finding a maximum flow in a network.
This approach, which is known as capacity scaling, essentially involves iteratively obtain-
ing solutions to successively better approximations to the original problem instance. This
technique is also due to Edmonds and Karp [8] and independently due to Dinitz [46]. We
need to develop some notation before we describe the algorithm.

As before, we let U denote the maximum capacity of any arc in the network. We interpret
the capacity of each arc as a [log(U + 1)]-bit binary number. Let u;(a) denote the ¢ most
significant bits of the binary representation of the capacity of arc a. We denote by F; the
network G with the capacity function u replaced by u;. Thus FPjogw 41y denotes the original
problem instance while Py denotes the network with all arc capacities being zero.

The capacity scaling algorithm, shown in Figure I11.12, starts at each iteration with the
maximum flow on the network F; and obtains the maximum flow on the network F,; using
the augmenting paths method. The algorithm starts with a zero flow on the network F.

The correctness of the capacity scaling algorithm is immediate. The following theorem

analyzes the time complexity of this algorithm.

THEOREM 8. On a nelwork with integral arc capacilies, the capacily scaling algorithm

runs in O(m?*logU).
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for ¢+ 0 to [log(U+1)] —1 do

Update the arc capacities in the network F, by multiplying
the current arc capacities by 2 and then adding 1 to the
capacity of an arc a if w;y;(a) = 2u;(a) +1;

Update the current flow by multiplying it by 2 ;

Apply the augmenting path algorithm by starting with the
current flow on the new network Fjy;.

Ficure I11.12. The Capacity Scaling Algorithm.
Proof. Let f; denote the maximum flow in F;. We claim that |f;11| < 2|f;| + m where
0 < i< [log(U+1)]. To see this, consider a minimum cut (S,7") saturated by f; in B.
We know by the Max-flow min-cut theorem that f;(S,7) = u;(S,7) and by Lemma 5,
fir1(S, 1) < uip1(S,T). Now u;qq(a) < 2u;(a) + 1 and the total number of arcs across the

cut (5,7") can be no more than m. Thus using Lemma 4, we get the following :
|fival = fis2 (S, T) S uiga (S, T) < 2ui(S,T) +m = 2f;(5,T) + m = 2[fi| + m.

Since the augmenting path algorithm starts with a flow of value 2|f;| on P4, and all arc
capacities are integral, no more than m augmentations are needed in any iteration of the

capacity scaling algorithm. The theorem follows immediately. m

Algorithms like the capacity scaling algorithm discussed above are often referred to as
weakly polynomial algorithms due to the dependence of their run-time on the size of the
input numbers. In the next few lectures, we will see polynomial time algorithms for the
maximum flow problem whose run-time is solely a function of the variables m and n. This

later class of algorithms is referred to as strongly polynomial algorithms.



LECTURE 1V

The Push-Relabel Algorithm

Scribe: Shane Henderson

Today’s lecture describes the Push-Relabel method [18] for finding a maximal flow in a
network, and then determines bounds for basic operations used by the algorithm. Most of
the material presented here can be also found in [4] which has an excellent introductory

discussion of the algorithm.

1. Preliminaries

Consider a directed network G(V, ) with a source s and a sink ¢ where the capacities of
the arcs are given by the non-negative function u. We seek a maximal flow from the source
to the sink.

The ezcess function e;(v) = 3, wyep = (incoming flow) — (outgoing flow) at node v.
Notice that we are not requiring flow conservation (otherwise e; is a particularly boring
function).

A node v is active if (v # s,1) and (e;(v) > 0). A node is active if it is receiving more
flow than it is passing on.

A distance labeling is a function d from the nodes to the nonnegative integers, such that
d(t) =0,d(s) = n, and d(v) < d(w) + 1 for all residual arcs (v, w). We may refer to a valid
labeling. This is exactly the same thing as a distance labeling. We call it a valid labeling
to emphasize the fact that it satisfies the constraints a distance labeling must satisfy.

An arc (v, w) is admissible if ((v,w) € Ey) and (d(v) = d(w) + 1).

Recall that a pseudoflow f is a function on the arcs of a network that satisfies the
capacity and antisymmetry constraints. A pseudoflow does not necessarily have to satisfy

conservation of flow. A preflow is a pseudoflow f where the excess function is nonnegative

28
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for all nodes other than s and ¢, i.e., a preflow is what you have when the inflow > the

outflow for all nodes except the source and sink.

2. The Algorithm

2.1. A Rough Description of the Algorithm. The push-relabel algorithm works by
loading up the source node s with more than enough flow, pushing that flow to the sink,
and then pushing the excess flow back to the source. The algorithm uses two operations
Push and Relabel to do this, hence the name.

It may be helpful to view the distance function as the height of a node, the arcs as pipes,
and flows as water in the pipes. In this context we always push water downhill. The push
operation corresponds to allowing excess water at a node to flow down to another node,
and the relabeling operation corresponds to lifting a node up to allow water to flow. An
arc is admissible if the arc has some spare capacity and the tail of the arc is a bit higher
than the head, so we can “pour” more water down the arc. For more details see [4].

At all times a preflow f and a distance labeling d are maintained and push and relabel

operations are applied until there are no active nodes.

LEMMA 6. If [ is a preflow and d is a distance labeling, t is not reachable from s in the
residual graph G.

Proof. Suppose there is an augmenting path s = vy, vy, ..., = t. We may assume the
path is simple (otherwise remove any loops in the path) so that < n. Since d is a distance
labeling we know that for any arc (v;, v;y1) on the path, d(v;) < d(vi41) + 1. Iterating we
get

d(vg) <d(v))+1<d(vg) +2< -+ < d(v) + L.

We know that d(vy) = d(s) = n and d(v;) = d(t) = 0. This implies that n <. But [ < n.

Therefore, no augmenting path exists. m

2.2. Initializing the Algorithm. The push-relabel algorithm requires a preflow and
a distance labeling before it can get started. To generate a preflow fill all the arcs leaving
s to capacity and set the flows in all the other arcs to zero. See Figure 1V.13. An initial
distance labeling is given by d(s) = n and d(v) = 0 for all other nodes v. Notice that any
arc from s to a node v is at its capacity, so it is not a residual arc, and therefore we do not
require d(s) < d(v) + 1. Also, for any residual arc (v,w), d(v) =0< 0+ 1= d(w)+ 1 so
that d is indeed a distance labeling.

Once we have a preflow and a distance labeling we begin applying push and relabel

operations, so now might be a good time to describe those operations!
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tu=@49 -7,
/
// (fv u) = (_41 O)

7/
/

2 fw=(1212  (f,u)=(0,10)

(f,wW=0(1200  (f uy=(0,0)
(f, U) = (-2, 0)\\

Ficure 1V.13. The initial preflow.

2.3. The Push Operation. The idea behind the push operation is to move excess
flow downhill. In order to do this we need an active node (one with excess flow) and an
admissible arc (one with some spare capacity to handle the increased flow). We need an
arc (v, w) € Gy where e;(v) > 0 and d(v) = d(w) + 1. It is tempting to say we could push
the flow further downhill if d(v) > d(w) 4+ 1. However, in this case the arc does not satisfy
d(v) < d(w)+ 1 and so cannot be a residual arc.

A push from v to w increases f(v,w) by as much as possible. How much can we increase
f(v,w) by? We need to maintain the preflow which means keeping f(v, w) < u(v,w) and
e;(v) > 0. Hence we may increase f(v,w) by § = min{u;(v,w),e;(v)}. This increases
e;(w) by 6 and decreases f(w,v) and e;(v) by 6. If u;(v, w) = 0 after the push (the arc
gets filled to capacity) we have a saturating push, otherwise we have a non-saturating push.
Figure 1V.14 gives examples of both types of push operation.

When pushes are no longer possible, relabel operations are performed.

2.4. The Relabel Operation. We can think of a relabel operation as lifting a node v
(increasing d(v)) so that flow can move “down” to a neighboring node. It is only worthwhile
lifting v if v has some excess flow and all arcs leaving v with excess capacity are level or
uphill. Hence the relabel operation is performed on an active node v when all arcs leaving
v are not admissible. The relabel operation replaces d(v) by min, vyeg, (d(w) + 1). Figure
IV.15 provides an example.

The following lemmas describe important properties of push and relabel operations.

LEMMA 7. The push and relabel operations maintain preflow and distance labeling valid-
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FiGure IV.14.
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(a): a saturating push; (b) a non-saturating push.
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Ficure 1V.15. A relabel operation.
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y.

Proof. The relabel operation does not change the flow and is constrained so that it does not
violate the distance labeling. Hence it is harmless. The push operation is constrained so that
the properties of the preflow are not violated. It can however create new residual arcs by
increasing the flow along an arc (v, w) that previously contained no flow. This creates spare
capacity in (w,v), making (w,v) a residual arc; see Figure IV.16. We therefore require that
after the push d(w) < d(v)+ 1, but a push operation is only applied when d(v) = d(w) + 1
so that d(w) = d(v) — 1 < d(v) + 1. Hence the distance labeling is still valid after a push

operation.

excess(v) =3 (f,u)=(0,5) excess(w)=1 excess(v) =0  (f,u)=(3,5) excess(w)=4

S - e

(f,u)=(0, 0) (f,uy=(-3,0)
Not aresidua arc Now aresidua arc

Ficure 1V.16. The push operation can create a new residual arc.

LEMMA 8. If a node v is active, then either push(v,w) applies for some w or relabel(v)

applies.

Proof. Suppose v is active. If there is an admissible arc (v, w), then push can be applied

to (v, w). If there are no admissible arcs from v, then relabel can be applied to v. m

2.5. The Algorithm. This is very simply stated.

while a push or relabel is possible

perform the operation

If the algorithm terminates then we must have a flow because no nodes will be active.
The flow is maximum because Lemma 6 shows that no augmenting path exists. In the next
section we bound the number of operations, showing that the algorithm terminates.

3. Analysis of the Algorithm

In this section we provide bounds for the number of push and relabel operations.

LEMMA 9. If v is an active node, there is a (simple) path from v to s in the residual

graph G.
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Proof. Let S be the set of all nodes reachable from v in Gy and S° be all nodes outside S.
Suppose for contradiction that s € S°.

Since v is active e;(v) > 0 and because f is a preflow, e;(w) > 0 Yw # s. Hence
e (S) =Y ucs€er(w) > 0. Keep this in mind. Let (w,z) be an arc where w € S and z € S.
If f(w,z) > 0 then f(z,w) < 0 = u(z,w) which means that (z,w) € E; which in turn
implies w € S. This is a contradiction and so f(w,z) < 0Vw € S¢,z € S. Let f(W,X) be
the total flow from a subset of nodes W to a subset of nodes X so that f(5°.5) < 0. So

now

er(5) = J(V,5)

But €;(.S) > 0 so we obtain the required contradiction and the lemma is proved. ®

LemMA 10. Vv, d(v) < 2n — 1.

Proof. It suffices to examine active nodes because d(v) can only increase when v is active.
If v is active, s is reachable from v in GGy by the previous lemma, and hence there is a simple
path from v to s of length | < n — 1. Using the same reasoning as in Lemma 6 we know

that d(v) < d(s)+1<d(s)+n—-1=2n—-1. =

LEMMA 11. Vv, d(v) never decreases and relabeling v increases d(v). Immediately after

relabeling v, v does not have any incoming admissible arcs.

Proof. The fact that d(v) never decreases follows if we can show that relabeling v increases
d(v), since relabeling v is the only way of changing d(v). Before the relabeling, we know that
d(v) < d(w) for all w reachable from v in the residual graph (otherwise a push is possible
from v). After relabeling v, we know that there is some wy where d(v) = d(wg) + 1 where
wy is reachable from v in the residual graph. Therefore, d(v) increased by at least one.
Before the increase, we had d(u) < d(v) 4 1 for all residual arcs (u,v). After the increase,

d(u) < d(v), so the second claim of the lemma follows. ®

LEMMA 12. The total number of relabelings is O(n?*) and the cost of performing the re-

labelings is O(nm).
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Proof. The cost of relabeling a node v is the out degree of v because we examine each
node on the end of an arc from v to find the minimum distance label. Therefore, the cost
to relabel every node exactly once is O(m) since }, ., outdegree(v) = m. BEach node can
be relabeled at most 2n — 1 times by the previous two Lemmas. Hence the total number
of relabelings is at most n(2n — 1) = O(n*) and the total cost of relabeling is at most
m(2n —1) = O(mn). &

LEmMMA 13. The number of saturating pushes is O(nm).

Proof. Consider a saturating push along an arc (v, w). After the push, node v cannot push
to w until w pushes back to v along the same arc. This can only occur if during the first
push d(v) = d(w)+ 1 and in the second d(w) = d(v) + 1. So d(w) must increase by at least
2. Hence by lemma 10, a push and a push back can occur at most n — 1 times, so that each
arc can experience a saturating push at most n — 1 times. Since there are only m arcs, the

number of saturating pushes is bounded above by m(n — 1) = O(nm). =

LEMMA 14. The number of non-saturating pushes is O(n?*m).

Proof. Define ® = 3" _y d(v) where X is the set of active nodes, so that ® > 0. Initially,
® = 0. Each non-saturating push decreases ® by at least one because a non-saturating
push from v to w deactivates v, subtracting d(v) from ®, while adding at most d(w) to @,
and d(w) = d(v) — 1. Therefore, the number of non-saturating pushes is bounded by the
amount @ can increase during the execution of the algorithm. ® can only increase because
of a saturating push or a relabeling. A saturating push from v to w can increase ® by at
most 2n — 1, since no distance labels change, and only node w, whose height is at most
2n — 1, can become active. There are at most O(mn) saturating pushes, so the increase
in ® due to saturating pushes is O(n?m). Each relabeling increases ® by the increase in
the label of the relabeled node. There are n nodes, and each node can increase its label by
at most 2n — 1. Therefore, the increase in ® due to relabelings is bounded by 2n% — n or

O(n?). Clearly, O(n*m) is the dominant term. m
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Implementations of Push-Relabel Algorithms

Scribe: Meredith Goldsmith

We finished Lecture 4 by proving upper bounds on the number of update operations
(saturating pushes, nonsaturating pushes, relabels) in any push-relabel algorithm for the
maximum flow problem. Today, we discuss specific implementations of the push-relabel
algorithm. In general, the bottleneck on running time is the number of nonsaturating
pushes. A generic algorithm will be shown to have running time O(n*m). By carefully
choosing the order in which update operations are performed, we reduce the number of
nonsaturating pushes and the time to O(n?). Using a special data structure, the time per
nonsaturating push can be reduced for an overall time bound of O(nmlogn). For complete

details on these time bounds, see [18] or [16].

head tail
{v.w}
V,W|V,W [V,W [u(v,w) V,W| V,W
f(v,w)

cur (v)

Ficure V.17. Adjacency edge list data structure.

1. Simple Implementation

We will implement push-relabel by performing a series of operations called discharge
which combine push and relabel operations in an efficient fashion. Discharge(v) takes an
active node v and tries to push all excess flow through arcs leading to the sink; if there are
no admissible arcs leaving v, discharge relabels v. To implement discharge we need some

data structures to represent the network and the preflow.

1.1. Data Structures. Active nodes can be maintained in a stack or a queue. If we
are not interested in a specific ordering of discharges, the particular data structure used is
not important as long as we can find an active node in constant time, can add a new active

node in constant time, and delete a node that becomes inactive in constant time.
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For every node v we create a list [(v) of all undirected edges adjacent to v. An undirected
edge is defined as an unordered pair {v, w} such that (v,w) € E. The list can be in any
(fixed) order. Notice that

(1) each edge {v, w} appears in two lists, the one for v and the one for w, and

(2) I(v) contains an edge {v, w} for each possible residual arc (v, w).

We associate with each edge {v, w} the values u(v,w) and f(v,w). For each list I(v), we
maintain a pointer cur(v) which indicates the next candidate for a pushing operation from
v. Initially, cur(v) = head(l(v)).

1.2. Discharge Subroutine. The discharge operation applies to an active node v. Dis-
charge iteratively attempts to push e;(v) through (v, w) such that {v,w} = cur(v) if a
pushing operation is applicable to this arc. If not, the operation replaces {v,w} by the
next edge on the adjacency list I(v) of v; or, if {v, w} is the last edge on this list, it resets
cur(v) to head(l(v)) and relabels v. Discharge(v) stops when e;(v) is reduced to zero or v
is relabeled.

The main loop of the implementation consists of repeating the discharge operation de-
scribed in Figure V.18 until there are no remaining active nodes. When there are no

remaining active nodes, neither push nor relabel can be applied, so f is a maximum flow.

discharge(v).
Applicability: v is active.
time—to-relabel < false;
repeat
if cur(v) is admissible then push(cur(v))
else
if cur(v) is not the last arc on the arc list of v then
replace cur(v) by the next arc on the list
else begin
cur(v) « first(v);
time—-to-relabel(v) ¢ true;
end;
until e;(v) =0 or time-to-relabel;
if time-to-relabel then relabel(v);

Ficure V.18. The Discharge Operation.

LEMMA 15. Discharge applies relabeling correctly.

Proof. Discharge only applies if v is active and stops as soon as v becomes inactive, so if
it calls relabel(v), v is active. It remains to show that when discharge relabels v, v has no

outgoing admissible arcs.
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At one time cur(v) pointed to the head of v’s adjacency list. Then cur(v) marched down
the list, considering each arc (v, w) and then advancing to the next arc. When we advanced,
either we had d(w) > d(v) or (v, w) was saturated.

Suppose d(w) > d(v) at the time {v, w} was the current arc. Discharge(v) calls relabel(v)
only when it has reached the end of v’s adjacency list, and no other call to relabel can occur
with v as the node being processed. Therefore, during the march down v’s adjacency list,
d(v) remains unchanged. Since the distance label of a node is monotonically increasing, so
d(w) could only have increased. So d(w) > d(v) still holds.

In the second case, if (v, w) ¢ E; when it was the current arc, the residual flow along
(v, w) could only have increased if at some later time w pushed flow to v. This would be
true only if d(w) > d(v); in fact, d(v) = d(w) — 1. Since d(v) remained unchanged and d(w)

cannot decrease, (v, w) is still not admissible. m

LEMMA 16. A generic version of the push/relabel algorithm based on discharging runs in
O(nm) time plus the total time need to do the nonsaturating pushes and to maintain the

set of active nodes, for a total of O(n*m) time.

Proof. Finding an active node takes constant time, and this cost can be absorbed by
a subsequent push or relabel operation. Every step of discharge(v) either causes a push,
increments the pointer cur(v), or relabels v. We proceed to count the total time needed for
these operations.

Assign the cost for running down the arc lists in the discharge procedure to the relabeling
procedure. This is legitimate since we run down the arc lists at most one more time than
the number of relabeling calls and each relabeling call will run down the arc lists to find the
minimum d(w) for each neighbor w. Recall that the the total cost of relabeling was shown
to be O(nm). A push takes constant time, and the number of saturating pushes is O(nm),
for a total running time of O(nm) plus the time for nonsaturating pushes. With O(n?m)
nonsaturating pushes, the push-relabel max-flow algorithm with the above data structures

and the discharge procedure runs in at most O(n?m) time. m

2. Maximum Distance Discharge Algorithm

By discharging active nodes in a restricted order, we can reduce the number of non-
saturating pushes from O(n*m) to O(n®). One common ordering which can be shown to
have running time of O(n?) is the FIFO ordering. The FIFO algorithm maintains the set of
active nodes as a queue, selecting new nodes to discharge from the head and adding newly

active nodes to the tail.
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Another implementation, called the maximum distance ordering, always discharges the
node with the largest distance label. Using a more sophisticated analysis, the maximum
distance label algorithm has been shown by Cheriyan and Maheshwari [3] to run in O(n?\/m)

time, but we will show a bound of O(n?).

2.1. Implementation of Maximum Distance Discharge Algorithm. The way to
implement max distance ordering is straightforward. Put the active nodes in buckets ac-
cording to their distance label. Recall that Vv 0 < d(v) < 2n—1. Create an array of buckets
B;, i € [0,...,n — 1], such that bucket B; = {active v : d(v) = i}. A pointer p into the
array points to the last bucket looked into, whose label is always the largest of any active

node. Let B, be the bucket pointed to by p.

2n-1 i 2 1 0
B_i B1|BO

!

p

FIiGURE V.19. Array of Buckets

At initialization place all active nodes in By and set p « 0. At each iteration, the max
distance algorithm removes a node from B, for discharging. If bucket B, is empty, move
p to the right; if a node v is relabeled during the discharge, set p < d(v) and put v into
B,. If additional nodes w were made active by discharge, add these to Byg,). Stop when
p moves too far to the right because there are no remaining active nodes. See Figure V.20

for the pseudocode.

process—-maz—dist-node
repeat
remove a node v from bucket E% ;
last-label < d(v) ;
discharge(v) ;
for each newly active node w, add w to f%@m ;
if d(v) #last-label then do
pd(v) ;
put v into bucket B,;
end
else if bucket B, is empty then move p«p—1 ;
until p< 0 ;

FIGURE V.20. Maximum Distance Discharge Algorithm.

LEMMA 17. The time spent updating the pointer p is O(n?).



3. IMPLEMENTATION WITH DYNAMIC TREES 39

Proof. The pointer p can move to the left only when a node is relabeled and by the amount
equal to the increase in the distance label of the node. Thus the number of steps to the left
is O(n?). The number of steps to the right cannot exceed the number of steps to the left
by more than the size of the array, which is 2n — 1. m

The bottleneck will be the number of nonsaturating pushes. We will show a bound of

O(n®) nonsaturating pushes by dividing the computation into phases.
DEFINITION 1. A phase is the period between two subsequent relabelings (of any node).
THEOREM 9. The mazimum label algorithm runs in O(n®) time.

Proof. During a phase, the pointer p moves only to the right (that is, the maximum label
is nonincreasing). The number of phases is clearly the same as the number of relabelings,
O(n?). There is at most one nonsaturating push per node per phase, since if we have a
nonsaturating push we do not relabel. Thus, the number of nonsaturating pushes in the

maximum label algorithm is O(n?), which is also the running time by Lemma 16. m

3. Implementation with Dynamic Trees

There are two ways to reduce cost of nonsaturating pushes:

(1) Reduce the number of nonsaturating pushes with smart ordering of active nodes.

(2) Reduce the cost per nonsaturating push by doing a bunch of such pushes at once.

The idea behind the second one is to save information about arcs used in nonsaturating

pushes and use this information.

3.1. Dynamic Trees Data Structure. The general idea is to perform a series of
pushes at once along a path in one direction, using the dynamic tree data structure which
Sleator and Tarjan [41, 5] designed for this purpose. Here, we treat this data structure as
a black box.

This data structure works with a forest of node-disjoint dynamic trees. Tree arcs always
point from a node to its parent. Dynamic trees support the operations described in Fig-
ure V.21. For any sequence of k operations, if n is the maximum tree size, the amortized

cost per dynamic tree operation is O(logn).

3.2. Send Operation. We represent the residual graph Gy by a forest containing every
node in some tree. We initialize the forest by calling make-tree on every node singleton.

Throughout the algorithm, we maintain the invariant that

e Every tree arc is admissible (except possibly in the middle of processing a tree).

e Every active node is a tree root.
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make-tree(v):
find-root(v):
find-value(v):

find-min(v):
change-value(v, §):
link(v, w, z):

cut(v):

Make new node v into a one-node dynamic tree.

Find and return the root of the tree containing node v.

Find and return the capacity of the arc from v to its parent, or else co
if v is the root.

Find the node of minimum capacity along the path from v to the root.
Change the value of the arc on path from v to root by d.

Combine the trees containing nodes v and w by making w the parent
of v and z the residual capacity along the connecting tree arc. This
operation does nothing if v and w are in the same tree or if v is not a
tree root.

Reverse of link. Break the tree containing v into two trees by deleting
the arc from v to its parent. This operation does nothing if v is a tree
root.

FicGure V.21. Dynamic tree operations.

ALGORITHM 1. Proceed as in discharge-based maximum labeling algorithm, but replace

calls to push(v, w) by calls to send(v,w). Additionally, whenever a node v is relabeled, for

all tree arcs (u,v), cut(u) is performed because these arcs are no longer admissible.

Pseudocode for send appears in figure V.22. The procedure send(v,w) takes an active

node v (which must be a tree root) and an admissible arc (v, w). Nodes {v, w} must be in

different trees if the invariant holds. Next v is linked to w by an arc with value wu; (v, w).

Then send pushes as much excess as possible from v to the root of its new tree, and then

cuts all saturated arcs to restore the invariant that all tree arcs be admissible. Note that

the preflow is represented in two different ways: explicitly for the arcs not in the dynamic

trees and implicitly for the tree arcs. When the algorithm terminates, the explicit flow on

the tree arcs can be obtained easily.

Send(v, w).

Applicability:

v is active and (v,w) is admissible.

link (v,w,us (v,w));

parent (v) ¢ w;

§ < min (e;(v), find-value(find-min(v));

change-value (v, —6);

While v # find-root(v) and find-value(find-min(v)) =0 do begin
z < find-min(v);

end.

cut (2);

f(z,parent(z)) < u(z, parent(z));
f (parent(2),z) < u(z, parent(z));

Ficure V.22. The Send operation.
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LEMMA 18. The number of cuts is O(nm); the number of links O(nm); the number of

send operations is O(nm).

Proof. Cuts are performed when an arc gets saturated or when relabel is called. A
relabel(v) operation causes at most degree(v) cuts. The number of saturations has been
shown to be O(nm). Each node can be relabeled at most O(n) times, and the cost of
cutting arcs associated with relabeling every node exactly once is O(m), so the total cost
of cuts associated with relabeling is O(nm). The number of links can be no more than n
plus the number of cuts, so this is also O(nm). Send always calls link, so the number of
sends must be O(nm). Other work done by the algorithm can be charged to links and cuts,
so that each link and cut is charged a constant amount of work and a constant number of

dynamic tree operations. ®

THEOREM 10. Any discharge-based tmplementation of push relabel which uses dynamic

trees runs in O(nmlogn) time.

Proof. The maximum size of any dynamic tree is O(n). Each send does O(1) dynamic
tree operations plus O(1) per arc saturated. The number of saturated arcs is the same as
the number of cuts, which is O(nm). Since there are O(nm) sends, O(nm) saturated arcs,

and O(logn) time per dynamic tree operation, the theorem follows. m

Actually, with more complicated analysis a bound of O(nmlog(n?/m)) has been shown

for a slightly different algorithm.



LECTURE VI

Minimum Cycle Mean in a Digraph

Scribe: Claudionor N. Coelho

Today’s lecture was given by Robert Kennedy. The topic of the lecture was Karp’s
Minimum Mean Cycle Algorithm. The reference for the lecture is in [25]. Please note that
the article has a typo (an “x” should be an “s”) and an error in the algorithm for finding

the cycle itself.

1. Problem Motivation

The need for minimum mean cycles can be motivated by the following problems:

(1) The “Iramp Steamer” Problem — You are a steamship owner making a living by
shipping goods among different cities. There are several defined routes between
cities each having an associated cost (negative if profitable, positive if not). In order
to maximum your profit, you want to find a cyclic route that minimizes your cost
per voyage.

(2) Minimum-cost circulations by cancelling minimum mean cycles, which will be cov-

ered by Prof. Goldberg in a few weeks. Minimum cycle mean is used as a subroutine.

2. Problem Definition

Given a directed and strongly connected graph G' = (V, F) and weight function f: £ —
R, let the weight of a path P be

w(P)=)_[(e)
eeP
and the mean weight of P be

m(P) =3 1)

eeP
where | P| is the number of arcs of the path P.

42
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The problem is to find a cycle C'in G such that for any cycle C” in G, m(C") > m(C).
Note that if the graph is not strongly connected, we can determine the minimum mean

cycle for each strongly connected component, and then take the least of these.

() &)

Ficure VI.23. Example graph.

EXAMPLE 4. For the rest of the notes we will use the graph of Figure V1.23 as an example.

There are two cycles in G, zuyt and tuy.
m(zuyt) =2=1=1-2)/4=1/2
m(tuy) = (1+1-2)/3=0/3=0.
Clearly, cycle tuy has the minimum mean weight.

Let Fi(v) be defined as the total weight of a minimum path from an arbitrarily fixed
“reference vertex” s to vertex v, having exactly k arcs. If no such path exists with exactly k
arcs, then Fy(v) is defined to be co. The following theorem relates a minimum mean cycle

with those minimum paths from a reference node.

THEOREM 11. X*, the minimum mean cycle weight, obeys

F (v) —
V= min max {M}
veV 0<k<n—-1

n—k
where n = |V|.

EXAMPLE 5. In the example of figure V1.23, the path stz has total weight of 3 (i.e.,
Fy(z)=3).

There are two steps to the proof, the first to show that if A* = 0 then

A* = min max {—F"(v) — Fk(v)} =0
vEV 0<k<n—1 n—k

and then to show that if A* # 0 the problem can be reduced to the case A* = 0 without loss
of generality.
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LeMMA 19. If A* =0, then

min max
veEV 0<k<n—1

{Fn(V) - Fk(V)}
n—k
Proof. The proof technique will be to view cycles as tails of paths from s.

Since A* = 0, there is a cycle of weight zero, and no cycle of negative weight, therefore
there must exist a minimum-weight path P, from s to v whose length may be taken to be
less than n. Since there are n nodes in the graph, if the length of the path P, is greater than
n, some node u appears twice, meaning that there is a cycle. Since A* = 0, the cycle must
be non-negative. So, if we disregard this cycle in the path P,, yielding P/, we will have that
w(P!) <w(P,), and P, would not be a minimum-weight path from s to v, a contradiction.

Let 7(v) be the total weight of P,, then

m(v) = min {F;(v)}

0<k<n—1
and since F,(v) > m(v) we get,

F,(v)—7(v) >0

F,(v)— min Fy(v) >0

0<k<n-—1

max {F,(v) — Fy(v)} >0

0<k<n—1
max {w} > 0.
0<k<n—1 n—=k -

Showing that there exists a v such that F),(v) = m(v) will prove the lemma. Let C' be
a cycle of zero weight and let v be a vertex on C'. Note that P, concatenated with any
number of trips around C'is no heavier than a path from s to v than P, (i.e., since C' has
zero weight two paths P, + z trips around C and P, 4+ y trips around C' is have the same
weight). Let u be a node in the cycle C' (v may be the same node as v or some other node
of the cycle C'). Construct a path P, by following F,, from s to v, and circling C' until
we reach the vertex uw which makes P, have length equal to n. If we can show that P,
is a lightest weight path from s to u then we can conclude that F,(u) = 7(u), implying
F,(u) — m(u) = 0.

By contradiction: Assume that P! is a lighter weight path from s to u than F,, and
that w # v (if v = u, P, is a lighter path than P,, a contradiction). Since the cycle
C' has weight 0, we know that w(FPy, ) = —w(Puw). If w(Py.w) > w(Pu.), then
w(P,) > w(P,) + w(FPy.), and P, is not a minimum-weight path. Similarly, for the case
where w(Py ) < w(Puw)), w(P,) > w(P,) + w(FPy,)), and P, is not lighter than F,. m
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Proof of theorem 11. To prove that when A* # 0 the theorem holds we use the following

argument. By reducing each arc weight by a constant ¢, Fy(e) is reduced by kc and hence

min max
veV 0<k<n—-1

is reduced by c. If we use a weighting function f' = f + ¢ such that f’ makes A* = 0 and

apply the above lemma we have proved the theorem. m

3. Algorithm

To find the minimum mean cycle in a graph G' make a table for Fj(v) using the following

equations, for all v in V,

Fy(v) =0, ifv=s,
Fy(v) =00 ifv#s,
and for 0 < k < n,

Fy(v) = min {Fy_ (w) + f(w, v)}.

EXAMPLE 6. For the example of figure V1.23, the following table gives the values for F,.

0 0 (o'} 00 00 00 00
1 (o'} 1 00 00 00 00
2 00 (o'} -1 00 0 3
3 o) fo'e) 1 0 00 00
4 (o'} 1 00 2 00 00
5 (o'} 3 -1 00 0 3
6 00 00 1 0 00 5

The computation requires O(n|E|) operations, and once the quantities F(v) have been
tabulated, we can compute A\* in O(n?) further operations. To find the minimum cycle, find

vertex v that minimizes

A {Fn (v) = Fi(v) }

0<h<n n—k
and the k that maximizes
Fa(v) = Fi(v)
n—k ’
The length n path from s to v that attains F, (v) contains a cycle, that cycle has minimum

mean weight.

ExampLE 7. To complete the example of figure V1.23, consider the following table.
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Lk s[t]ulyla] 2|
0 00|00 | —00 | —00 | 00 | —00
1 0|0 | —00 | —00 |00 | —00
2 oo|loo| 05| —c0|o0| 0.5
3 00 | 00 0 0 || —©
4 || -—0| -1 || -0
5 o0 | 00 2 —00 | 00 2
max 2 0 2

This table shows that y is the vertex that minimizes
F (v) —
s {Fo) =00}
0<k<n n—k

and k£ = 3 maximizes
Fa(v) = Fy(v)
n—k ’
Finally, the length n path is stutuy and the cycle tuy has A* = 0.

4. Correctness

We show that the cycle found on the length n path from s to w has minimum weight. By
the same transformation as before, we may assume without loss of generality that A* = 0.

By contradiction: Assume that the cycle is not zero weight. Deleting the cycle yields a
lighter path to w, say with length j. Then F,(w) > F;(w) and thus F,(w) — F;(w) > 0, a
contradiction because

O:A* :minvev maXOSkSn—l{w}

Fp(w)—Fr(w)

= MaXg<k<n— 1{ ek }

>{ nlw) =Byl }>O



LECTURE VII

The Blocking Flow Algorithm and Bipartite Matching

Scribe: Tzu-Hui Yang

1. Dinitz’ Blocking Flow Algorithm

In today’s lecture, Robert Kennedy covered Dinitz’ blocking flow algorithm [6] and the
bipartite matching problem.

DEFINITION 2. A flow is called a blocking flow if every s-t path traverses a saturated

arc.

1/0
1/0
V1

1/0 V1
10

FiGure VII.24. A blocking flow is not necessarily a maximum flow.

ExaMmPLE 8. Note that a blocking flow is not necessarily a mazimum flow. In Figure

VI1.24, the flow is a blocking flow bul not a maximum flow.

DEFINITION 3. A layered network L = (V, FE) is one in which every node v € V may

be assigned to a layer number [(v) and all arcs go from one layer to next, ie., for all

(v,w) € E, l(w)=1(v)+ 1.

DEFINITION 4. Given a network G = (V, E) and a flow [, define Gi(f) = (V, A) where
A= {(u,v) € Es|l(v) = l(u) + 1} and l(v) is the breath first search distance of v from the

source s in the residual graph G/ .

Dinitz’ blocking flow algorithm for finding a maximum flow is shown in Figure VII.25.

The following lemma implies that the algorithm terminates in at most n — 1 iterations.

LeEMMA 20. Let [;(v) denote the layer number of v on the i-th iteration. Then [;(t) <

liv1(t) for alli, ie., [(t) increases at every iteration.

47
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[0
while there exists an augmenting path w.r.t. f

Compute a blocking flow f" in G,(f);
f—f+7.

Ficure VII.25. Blocking flow algorithm

Proof. Let GG; be the residual graph before i-th iteration and let L; be the layered network
at i-th iteration. Clearly for (v, w) € G;, we have [;(w) < [;(v) + 1. Also, for (v,w) € L;,
li(w) = l;(v) + 1. Every arc of G,y is either an arc of G; or the reverse of an arc of L;.
Hence for every (v, w) € Gi41, li(w) <[;(v)+ 1. By induction on /;4;(v), this implies that
l;(v) < liz1(v). In particular, [;(t) < l;41(¢).

Suppose ;(t) = l;11(t) and let P be a shortest path from s to ¢ in G;4;. Then for any
node v on P, [;(v) = l;;1(v). This implies that P is a path in L;, contradicting the fact that
at least one arc on P must be saturated by the blocking flow found in L;. So [;(t) < l;41(%).
|

We’ve proved that Dinitz’ blocking flow algorithm takes less than n iteration. The ques-
tion now is how long does it take to find a blocking flow in the layered network. The

following simple algorithm is easily seen to run in O(m?) time:

Saturate shortest paths from s to t in Gy, one al a lime, using BFS.

But we can do better. Figure VII.26 describes an O(nm) blocking flow algorithm due
to Dinitz, who observed that, if during a depth-first search the algorithm has to backtrack
from v, there cannot be any path through v, so we can delete v and all its incoming arcs.
The algorithm finds a path from s to ¢ using depth-first search, pushing enough flow along
the path to saturate some arc, deleting all saturated arcs, and repeating until ¢ is no longer
reachable from s.

To see that Dinitz’ blocking flow algorithm is correct, observe that an arc (u, v) is deleted
from G only if (u,v) is saturated or v has no outgoing arcs (equivalently, all paths from v
to t are saturated). The algorithm continues to search for augmenting path until there is
none available. It is clear that the algorithm produces a blocking flow.

In this algorithm, the function init is called no more than m + 1 times. Augment is an
O(n) operation since the length of any s-t path is less than n. Since every invocation of
either augment or retreat deletes at least one arc, the total number of calls to either augment
or retreat is at most m. Finally, at most n — 1 advance steps precede an augment or retreat,

so there are at most (n—1)m advance steps. Therefore, Dinitz” blocking flow algorithm finds
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init: p « [s]; v + s; goto advance
advance: if there is no (v, w) € G goto retreat
else begin
pept[wlvew
if w =1t goto augment
else goto advance
end
augment:let A be the minimum residual capacity on augmenting path p
add A to f on all arcs of p
delete saturated arcs
goto init
retreat: if v = s STOP /* flow is blocking */
else begin
let (w,v) be the last arc on p
p < p — [v]; delete v and all arcs into v; v + w
goto advance
end

Ficure VIIL.26. Blocking flow algorithm.

a blocking flow in O(nm) time and finds a maximum flow in O(n?m) time.

2. Bipartite Matching

DEFINITION 5. A matching M in a graph G is a set of edges that are node disjoint.
And the size of a malching, denoted |M|, is the number of edges in the matching.

DEFINITION 6. A bipartite graph G = (V. |J Vs, E) is one with the property that for all
(v,w) € E, v eV, and w € Vy, where Vi Vs = 6.

Given an undirected bipartite graph G, the bipartile malching problem is to find in G a
matching of maximum size.

For example, suppose Viy is a set of workers, and V; is a set of jobs. Define G = (V, F),
with V = Vi UV,, and (u,v) € F iff worker u is qualified to do job v. The problem
of assigning workers to jobs so that as many jobs as possible are assigned is the bipartite
matching problem.

For a bipartite graph G = (V, £), with V = V| [J V3, there is a natural correspondence
between matchings and flows through a network G’ derived from G by directing all edges,
say from V; to V3, adding two new nodes, s and ¢, and arcs (s, vy), (v, t) for all v, € Vi,
vy € Vi, and setting all arc capacities equal to one. A matching M in G defines a flow
with value |M| on G’: saturate all arcs corresponding to M, and all (s,v;), (vs,t) arcs

incident to these arcs. Conversely, any integral flow in G’ defines a matching in G under
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the obvious correspondence. The flow value is equal to the matching size, so a maximum

flow corresponds to a maximum matching.

THEOREM 12. [9, 48] Dinitz’ blocking flow algorithm solves the bipartite matching prob-
lem in O(y/nm) time.

Proof. Since all positive residual capacities are equal to one, all augmenting path arcs are
deleted after an augmentation. This implies that the total augmentation cost is O(m). For
each (v, w) in the layered network, there is at most one advance over (v, w), since either an
augmenting path containing (v, w) is found or the search retreats from w to v, and in both
cases (v, w) is deleted from the graph. Thus each blocking flow computation takes O(m)
time.

It remains to show that the algorithm terminates in O(y/n) iterations. Let f* be an
optimal flow. We’ll show that after \/n iterations, |f*| — |f| < y/n. Then, since each
blocking flow step increases the flow by at least one, the total number of iterations is
O(/m).

Actually, it’s convenient to prove something stronger: if [(¢t) = k, then |f*| — | f| < n/k.
The following observation is a key to the proof. Suppose we have a 0-1 flow in a network
obtained from a bipartite matching flow; then every internal node has either in-degree of
one or out-degree of one (in the residual graph).

Consider a flow f’ that augments the current flow f to an optimal flow f*. By the
decomposition theorem, f’ can be decomposed into a collection of paths and cycles, and the
number of paths is equal to | f*| — | f|. Note that the paths are node-disjoint by the above
observation, and each path has length of at least k. Therefore the number of paths is at
most n/k. m

DEFINITION 7. In a bipartite matching problem, a perfect matching is a matching such

that all nodes in both sets are matched.

Hall’s theorem is used to give an easy proof that no perfect matching exists. First, the

concept of a neighborhood is defined.

DEFINITION 8. Given a graph G = (V, F) and a subset X of nodes, define N(X), the
netghborhood of X, as N(X) = {v|(z,v) € E,z € X }.

THEOREM 13. Hall’s Theorem
There exists a perfect matching in a bipartite graph G = (ViU Vs, E) if and only if for every
X C Vi, |X|<IN(X).
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Proof. (=) Suppose a perfect matching exists. Let X be any subset of V;. Each element
of X must be matched to an element of V; and different elements of X are matched to
different elements of V,. Therefore, | X| < |N(X)].

(<) Assume that there is no perfect matching. Consider an integral maximum flow in
the corresponding matching network G = (V, F), V. = ViUV, U{s,t}, and the minimum
cut(5,7"), where S is the set of nodes reachable from s in the residual graph G; and
T'=V —S. Let X = {v|v € V| and there is a s-v path in G;}. Note that all unmatched
nodes of V; are in X. (Figure VIL.27 illustrates the proof.) The arcs from s to V; — X and
the arcs from N(X) to ¢t are saturated by the definition of X. Therefore, the minimum cut
has capacity of at least (|Vi| — |X|) + |N(X)], i.e.,

(capacity of minimum cut) > (|V1| — | X|) +

N(X)].
But we know this must be less than |V;| because there is no perfect matching, i.e.,
|Vi| > (capacity of minimum cut).
Combine the two inequalities and we get
1X] > [N(X)].

Therefore, VX € Vi, | X| < |N(X)| implies that there exists a perfect matching. m

X N(X)

min cut

- - = : saturated arc

Ficure VII.27. Proof of Hall’s Theorem.



LECTURE VIII

Two Phase Push-Relabel Algorithm

Scribe: Chih-Shuin Huang

1. Two Phase Push-Relabel Algorithm

The two-phase push-relabel algorithm [17] maintains a preflow g and a valid labeling d
for g. Like the single-phase push-relabel algorithms from previous lectures, the two-phase
algorithm proceeds by examining nodes with positive flow excesses and pushing flow from
them to nodes estimated to be closer to ¢ in the residual graph. As a distance estimate, the
algorithm uses the labeling d, which it periodically updates to more accurately reflect the
current residual graph.

During the first phase, flow is pushed toward the sink. The first phase ends having
determined a minimum cut and the value of a maximum flow. During the second phase,
remaining flow excess will return to the source, converting the preflow into a maximum
flow. The dominant part of the computation is the first phase. Now we describe the two

phases in more detail.

1.1. Phase I. The first phase begins like the single-phase algorithm, except

(1) we define d(s) = n and
(2) we define a node v to be active if v # t, e,(v) > 0, and d(v) < n.

1.2. Phase II. The second phase returns the flow excesses to s by one of two methods.

We can either

e decompose the preflow according to a modified version of the flow decomposition

theorem, and return excesses to s along paths in the decomposition; or
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e run the first phase of the algorithm “backwards”, i.e., fix the label of the source at
zero, initialize the labels of all other nodes to zero, and work in the residual graph

with initial solution equal to the preflow we found in the first phase.

The first of these options requires O(nm) time to decompose the preflow into s-t paths,
cycles, and paths from s to nodes with excess, and then O(n?) time to return the excesses
to the source in the obvious way.

The second option may require the same asymptotic amount of time as the first phase,
though in practice such an implementation of the second phase tends to be very fast, and
is simpler to implement than flow decomposition. The remaining analysis will refer to this

choice of second phase implementation.

2. Correctness of the Two Phase Push-Relabel Algorithm

For a preflow g, let (S,,7,) be the node partition such that 7, consists all nodes from
which ¢ is reachable in G, and S, = V — T},. Familiar arguments yield a familiar result,
namely that the distance labeling underestimates true distances to the sink in the residual

graph:

LEMMA 21. Throughout the first phase, if d is a valid labeling w.r.t. g, then d(v) is less

or equal to the distance from v tot in Gy, for allv e V.

LEMMA 22. When the first phase terminates, (S,,1,) is a cul such that every pair v, w
with v € Sy, w € T, satisfies g(v, w) = u(v, w).

Proof. Every node v € T, has d(v) < n since d(v) is a lower bound on the distance from
v totin Gy, and this distance is either less than n or infinite. Thus every node v # ¢ with
eg(v) > 01isin S,. This includes s, which means that (S,,7}) is a cut. If v, w is a pair such

that v € S, and w € T}, then u,(v, w) = u(v, w) — g(v, w) = 0 by the definition of 7,,. m
COROLLARY 2. At the end of the first phase, no node v with e,(v) > 0 can reach t.

THEOREM 14. The node partition (S,,T,) remains fized during the second phase. When

the second phase terminates, (S,,1,) is a minimum cul and g is a mazimum flow.

Proof. Because all excesses are on the source side of the cut (S,,7},) at the beginning of
the second phase, and this cut is saturated, no excess will ever cross into T,. Hence this
cut is saturated at termination of the second phase, and therefore must be minimum.
Since every excess must be able to reach the source, the second phase maintains the
invariant that e;(v) > 0 implies d(v) < n, so throughout the second phase, every node with

excess is active. This implies that when the second phase terminates, ¢ is a flow. m
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It is a straightforward exercise to see that the time bounds proved for various processing
strategies (FIFO, Maximum-Distance Discharge, etc.) apply to the corresponding two-phase

implementations as well.

3. Some Remarks on the Two Phase Push-Relabel Algorithm

3.1. Exact Relabeling. It is possible to modify the algorithm so that when a push step
is executed, the distance labels are exact distances to the sink in the residual graph. The
modification involves a stronger interpretation of the next edge of a node, which requires
the next edge to be unsaturated and point to a node with a smaller label. If a push step
saturates the next edge of v, a new next edge must be found by scanning the edge list of v
and relabeling if the end of the list is reached, like in the push/relabel step. If a relabeling
step changes the label of v, the next edge must be updated for all nodes w such that (w, v)
is the next edge of w. It is easy to see the above computation takes O(nm) time during the
first phase of the algorithm.

It is not clear that this exact labeling strategy really improves the performance of the
algorithm, because the work of maintaining the exact labels may exceed the extra work due
to inexact labels. However, the above observation suggests that as long as we are interested
in an O(nm) upper bound on an implementation of the generic algorithm, we can assume

that the exact labeling is given to us for free.

3.2. Efficient practical implementation. There are two refinements that may speed
up the algorithm by more quickly showing that nodes with positive excess have no paths to

the sink. We will describe these two heuristic improvements in the following:

(1) Global Relabeling: We can periodically bring the distance labels up to date by
performing a breadth-first-search backward from the sink. Applying this initially
and every time the algorithm does ¢m work, for some constant ¢ > 1 will not affect
the worst-case running time of the algorithm. (One way to define work is to say
that a push counts as one unit of work, and a relabeling of v counts as degree of v
units.)

(2) Gap Relabeling: We can maintain a set of S of dead nodes, those with no paths to
the sink. After the edges out of the source are saturated, the source becomes dead.
We also maintain, for each possible value of a distance label &, the number of nodes
whose distance label is z. It can be easily shown that if for some z this count is
zero, no node with a distance label greater then = can reach the sink. If there is
exactly one node with distance label of z and this node is relabeled, we can add this

node and all nodes with distance label greater than 2 with are not currently in S
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to S. This is what gap relabeling does. Gap relabeling can be implemented so that

the worst-case running time of the push-relabel method is not affected.

3.3. What is the best algorithm for the Maximum Flow Problem? According to
recent experimental studies, the best algorithm for the maximum flow problem in practice
is the maximum distance discharge algorithm, plus the two heuristics. The first-in first-out

algorithm with global relabeling is not too bad and is easy to implement.

4. Bipartite Matching Problem

For a bipartite graph G = (V, F), with V = X UY, there is a natural correspondence
between matching and integral flows through a network G’ derived from G by directing all
edges, say from X to Y, adding two new nodes, s,t, arcs (s, z), (y,¢) forall z € X,y €Y,
and setting all arc capacities equal to one. Also notice that Vv € X, in-degree(v) = 1, and
Vw €Y, out-degree(w) = 1.

A matching M in G defines a flow with value |M| on G’: saturate all arcs corresponding
to M, and all (s, ), (y,t) arcs incident to endpoints of these arcs. Conversely, any integral
flow in G’ defines a matching in G under the obvious correspondence. The flow value is

equal to the matching size, so a maximum flow corresponds to a maximum matching.

X Y

in-degree =1 out-degree =1
Ficure VIIIL.28. Bipartite Matching Network

We will show that if we use global relabeling and a modified minimum distance discharge
algorithm, the maximum matching can be found in O(y/nm) time. This bound is the same
as the one for Dinitz’ algorithm applied to bipartite matching.

The first phase of the algorithm works like that of the maximum distance discharge algo-
rithm, but an active node with the smallest distance label is always chosen to be discharged,
and discharge(v) terminates as soon as either the excess of v becomes 0 or v is relabeled.
The first phase ends when the node with minimum distance label has distance label at least

n (and hence no remaining excess can reach the sink).
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LEMmMA 23. Let f* be an integral mazimum flow, let [ be an integral preflow, and d be
such that Vv € V — {t}, e;(v) > 0 = d(v) > \/n, then the residual flow value |f*| —e;(t) =

O(v/n).

Proof. Consider f’ that augments f to f*. Note that ¢ is not reachable from s in Gy, so
f' can be decomposed into a collection of paths from nodes with excess to ¢, paths from
nodes with excess to s, and cycles. The number of the paths of the first kind is equal to
the residual flow value.

Define the interior of a path to be the path without its end nodes. Consider interiors of
paths from nodes with excess to the sink. The interior of such a path has length at least
Vn—2.

After the excess flow at v € X UY (if any) is moved from v to s or to ¢ along the
corresponding paths of f/; in the residual graph either in- or out-degree of v is one. From
this, it is not hard to see that the path interiors are node-disjoint. Therefore the number

n

of such paths to ¢ (and hence the residual flow value) is at most -2 =O(y/n). =

THEOREM 15. The first phase of the bipartite matching algorithm works in O(y/nm)

time.

Proof. Divide the computation of the first phase into two parts. The first part is up to
the point when a node with distance label greater than /n is chosen to be discharged.
There are at most y/n distance label increases per node and no nonsaturating pushes, so
the amount of work done by the algorithm is O(y/nm).

At the beginning of the second part of the first phase, the residual flow value is O(y/n)
by lemma 23. Note that immediately after a global update, the algorithm picks a flow
excess and pushes it all the way to the sink without any relabelings because the true
distances ensure that each node in the residual graph has an outgoing admissible arc,
and the minimum distance label selection rule guarantees that no such arc can become
saturated before the first excess active after a global update encounters it. Thus each time
the algorithm does O(m) work, the residual flow decreases by one. It follows that the second

part takes O(y/nm) time. ®

The second phase of the bipartite matching algorithm is very simple and fast. First, all
excesses at nodes y € Y are returned to nodes in X. To see that this is trivial, note that
every node with excess in Y must have an outgoing residual arc to a node in X. Note now
that all excesses are unit, since the residual indegree of any node in X is zero if it has a
unit of excess. Now, to see that it is trivial to return all the excesses to the source from X,

note that because the first phase ends the first time the minimum distance label of a node
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with excess is at least n, f(s,v) =1 for every v € X. Therefore, the nodes with excess can
return it directly to s, converting f into a flow. It is easy to perform the second stage in
O(m) time.



LECTURE IX

The Minimum Cut Problem

Scribe: Eric Veach

We have already discussed the problem of finding a minimum s-¢ cut, for a specific choice
of s and t. Today we consider the problem of finding the smallest such cut over all choices
of s and t, known as the minimum-cut problem.

There are several variations on this problem: the graph may be directed or undirected,
and the edges may be weighted or unweighted. In the undirected, unweighted case, a
minimum cut is the smallest set of edges which, when removed, separate the graph into two
or more connected components.

This has obvious applications to network reliability — the minimum cut tells us how many
communication links need to fail before the network is separated into two or more pieces.
We could even use edge weights, for example to specify how much TNT is required to blow
up each link. Then the value of a minimum cut would be the smallest amount of TNT a

saboteur needs to smuggle past the security system.

Minimum Cut Algorithms

The simplest approach to computing a min-cut is to simply compute an s-¢ cut for each
pair of nodes (s,t) and then take the smallest of these. This solves the problem using O(n?)

max-flow computations. However it is quite easy to do better than this:

THEOREM 16. A minimum cul can be computed using n — 1 minimum s-t cul compula-

tions in the undirected case, or 2(n — 1) computations in the directed case.

Proof. Consider the undirected case. Our algorithm is to fix a node s, and then compute

a minimum s-¢ cut for each of the other nodes {. We claim that one of these must be a
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minimum cut. To see this, let (S5,5) be a minimum cut (where s € S). Since S is non-
empty, it contains a node ¢. Now (S, S5) is an s-t cut, and thus when we consider s and ¢,
the minimum s-¢ cut we compute will be at least as small as (5, S). Of course it cannot be
smaller, so we have found a minimum cut.

There is a slight variation where we “glue” s and ¢ together after we compute their
minimum s-¢ cut. That is, we identify s and ¢ together into a single node, leaving multiple
arcs in place. We take the new node as the source, pick a new sink, and repeat this until

we run out of nodes (n — 1 cut computations). We note two facts about this process:

e If two nodes lie on the same side of a cut (S, S), gluing them together does not alter
the cut’s value (we have not changed any of the edge weights in the cut).
e Gluing two nodes together can never decrease the size of the minimum cut, since

any cut in the new graph is a cut in the original.

To see that this algorithm will find a minimum cut, let (5,5) be a minimum cut and let
t be the first sink chosen which lies on the opposite side of the cut from s. All the previous
collapsing has not changed the value of (S, S), and thus the s-t cut we find will be minimum.

Now consider the directed case. Again we fix a vertex s, and observe that the minimum
cut must be of the form (S,S) or (S5,S5), where s € S. We handle these possibilities
separately in two phases. The algorithm described above will find the minimum cut with
s on the source side (this is the first phase). To find the minimum cut with s on the sink
side, we simply reverse all the arcs of G and run the algorithm again. The minimum cut of
G will be the smaller of these two cuts. Note that the same initial vertex s must be used

for both runs. m

We will describe below how the directed min-cut problem can be solved using approxi-
mately the same work required for two max-flow computations (in the push-relabel frame-
work).

Note that the undirected min-cut problem appears to be easier than the general max-flow
problem. Nagamochi and Ibaraki [33] have an O(nm + n*logn) deterministic algorithm,
and David Karger CIiff Stein have recently discovered an O(n?log®n) randomized (Monte
Carlo) algorithm.

The Hao-Orlin Algorithm

The key idea of the Hao-Orlin algorithm [23] is to choose the next sink in a clever way, so
that we can make use of information from the previous max-flow computations. As before,
we will fix an initial source s, and run the algorithm in two phases (for the directed case).

The first phase finds a minimum cut such that s is on the source side, then we reverse all
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the arcs and run the algorithm again to find a minimum cut with s on the sink side. It is
important that s remain fixed for both phases.

In each phase, we will choose a sequence of sinks ¢;,t,,...,¢,_;. Note that the sequence
will in general be different for the two phases. When {; is selected as the sink, we start
pushing flow towards ¢;, stopping as soon as we have discovered a maximum preflow (i.e.,
no more flow can reach the sink). We can immediately extract a minimum s-t; cut (9, S)
from the maximum preflow, by defining S to be the set of nodes which have a path to ¢; in
the residual graph. Finally, we merge s and ¢; together, and select a new sink.

In more detail, these are the changes we need to make to the standard push-relabel

algorithm:

e The algorithm is initialized with d(s) = n. As will be shown below, this is sufficient
to guarantee that there is never a path from s to ¢; in the residual graph.

e To “merge” ¢; with s, we simply set d(¢;) = n, and then saturate all arcs out of ¢;
to validate the distance labelling. This effectively makes ¢; another source node. If
the push-relabel implementation uses dynamic trees, all dynamic tree edges into ¢;
must be cut before it becomes a source node (this preserves the property that all
dynamic tree arcs are admissible).

e We will specify later exactly how to choose the next sink node ¢;. However, for the
push-relabel algorithm to work correctly while ¢; is the sink, we must ensure that
the gap d(s) — d(t;) is large enough such that no s-{; path can exist in the residual
graph G} (where s is the “merged” source node, consisting of a set of source nodes
S).

Define E(ti) to be the distance label of ¢{; when ¢; is chosen to be the current sink.

Our sequence of sink nodes will satisfy the following;:

(1) () =0
(2) dt;) <1+ r?ggia(tj) Vi>2

From this it is easy to prove by induction that d(¢;) < ¢ for all 7 > 1, and thus
d(s) — d(t;) > n — ¢ while ¢; is the sink.

Now suppose there is a simple path P from s to ¢; in the residual graph G';. Observe
that G' has been reduced to n — i+ 1 nodes (since the previous ¢ — 1 sinks have been
merged into s), thus P has at most n — 7 arcs. But for each arc (v, w) of P we have
d(v) < d(w)+1, thus d(s) < d(t;) + (n—1), a contradiction. It remains to show how

each t; can be selected to satisfy (2).
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Ficure 1X.29. A problem with selecting the next sink

Ficure 1X.30. Creating a gap in the occupancy array

o We will slightly modify the definition of an active node and an admissible arc as

described below.

Selecting the next sink

Consider finding a minimum cut between s and ¢ in the graph of Figure 1X.29. The
numbers labeling the arcs are the capacities; those labeling the nodes are the distance
labels. The usual push-relabel algorithm will terminate with the distance labels shown. At
this point, we will merge ¢ with s by setting d(t) = n.

But now to satisfy the rules above for choosing the next sink node, we need a sink whose
distance label is at most one. No such node exists, so we are stuck. This example illustrates
the care with which sink nodes must be selected.

We solve this problem using a variation of the gap relabelling idea (first introduced as a
heuristic for the two-phase push-relabel algorithm). We define an occupancy array which
has slots S[¢] for all the possible distance labels, 0 < ¢ < n. Slot ¢ records the number of
nodes whose distance label is ¢. It is clear that this structure can be maintained without
increasing the running time of the algorithm.

Consider the relabelling of some node v, where d(v) = 7. Suppose this relabelling reduces
S[i] to 0 (this is called a gap, see Figure 1X.30). Then clearly any node w with d(w) > i
(including v itself) cannot have a path to the sink in the residual graph G}, since each
arc on the path reduces the distance label by at most one. Thus all such nodes w can be
ignored for the purpose of computing a maximum preflow.

In fact, the algorithm will use this property to divide the nodes of G into two groups,
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Ficure 1X.31. The stack of dormant nodes
the set D of dormant or frozen nodes, and the set W =V — D of nodes which are awake.
We further classify the dormant nodes into a stack Dg, Dy, ..., Dy, where Dy = S (the set
of source nodes).

When the relabelling of a node v would produce a gap, instead of relabelling v we freeze
the set of active nodes w € W with d(w) > d(v). This creates a new set of dormant nodes,
which we add to the stack (increment k and put them in Dy). These nodes are removed from
the occupancy array, and generally ignored until we decide to unfreeze them. In particular,

we redefine active nodes and admissible arcs to operate only on W, as follows:

e A node v is active if v € W\ {t} and €;(v) > 0.
o An arc (v, w) is admissible if v,w € W, uy(v,w) > 0, and d(v) = d(w) + 1.
We can now describe the method for choosing the next sink. Basically we work with

the nodes of W until we run out, then back up to the most recently frozen set of dormant

nodes.

(1) Move ¢; from W to S as previously described.

(2) If now W = 0, set W = D, and decrement k (pop the top set of dormant nodes
from the stack).

(3) Let ¢;41 be the element of W with the smallest distance label.

Analysis of the algorithm

LEMMA 24. There is never a residual arc from a node of D lo a node of W, or from a

node of D; to a node of D; where i < j.

Proof. When a set of nodes D; is frozen, there is no residual arc from D; to W (there is
a gap between their distance labels, and any residual arc decreases d by at most one). We
have redefined the admissible arcs so that flow is pushed only between nodes of W, hence

this property is maintained as long as D; is dormant. m

This means that when finding the minimum s-{; cut, we need only consider the nodes of
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W, since only these nodes could have a path to ¢; in the residual graph. Note that in the
dynamic tree implementation, there will be no tree edges leaving D because dynamic tree

edges are always admissible.
LEMMA 25. Fach sink t; satisfies d(t;) < 1+ max;; d(t;).

Proof.
Case 1. W # () (after t;_; is removed).

Note that the sink’s distance label never changes. Let ¢; be the node of W with the
smallest distance label, and suppose that d(t;) > d(t;_;) + 1. Since the occupancy array
contains only nodes of W, there must be a gap. But whenever a relabelling would create a
gap in W, we prevent it by removing a set of nodes from W and freezing them. Thus such
a gap cannot exist, and d(t;) < d(t;_1) + 1.

Case 2. W = (.

In this case we set W = Dy, unfreezing a set of dormant nodes. Let v be the node
of W with the smallest distance label, i.e., the unique node whose attempted relabelling
caused Dy to be frozen. At that time, W must have contained at least one node w with
d(w) = d(v) — 1 (since otherwise there would already be a gap). Distance labels never
decrease, so when w becomes a sink d(w) > d(v) — 1 will still hold. Since every node of W
will be chosen as a sink before v is unfrozen, it follows that max;.;d(t;) > d(v) — 1, and

thus setting ¢; = v will give the desired bound. =

Running Time. The distance label for any node v never exceeds n, thus there are
O(n?) relabellings. We can analyze the time complexity exactly as before, including the
dynamic tree implementation. Note that the work for freezing and unfreezing is O(n?),
since we freeze a node at most once per sink. This gives an O(n?) algorithm for the min-cut

problem, which can be reduced to O(nmlog(n?/m)) using dynamic trees.



LECTURE X

Minimum Cost Flow and Assignment Problems

Scribe: Makoto Hoketsu

1. Minimum Cost Flows

The mintmum cost flow problem is as follows: given an instance of the maximum flow
problem and function ¢ : E — R, where ¢(a) represents the cost per unit if flow on @, find
a maximum flow that has the minimum total cost. The function ¢ has the antisymmetry
property c¢(a) = —c(a®) and we define the cost of a pseudoflow f to be

1 .
c(f) = 2 Z c(a) f(a) = (by antisymmetry) E c(a)f(a).

aEE a€E f(a)>0
A minimum cost flow problem can be transformed into a minimum cost circulation prob-

lem.

DEFINITION 9. A pseudoflow thal salisfies conservation conslraints al every node of the

graph is called a circulation.

In formulating the circulation problem, we allow arcs to have a lower bound on capacity
in addition to an upper bound (as a result, not all circulation problems have a solution).
The capacity bounds have the antisymmetry property u(v,w) = —I(w,v). We can think
about specifying the desired upper and lower bounds in a preferred direction; then the
bounds in the reverse direction are implicit.

We can find if there exist a feasible flow or not using a maximum flow algorithm. Without
loss of generality, we assume that [(a) < u(a) for every a € E.

We can convert a circulation problem (V, FE, [, u) into the maximum flow problem (V' U
{s,t}, E',u'), where E' O E. For each arc (v,w) € F we define

, (v, w) if I(v,w) >0 < u(v,w),
(v, w) = { u(v, w) — (v, w) otherwise
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For arcs (v, w) € I with [(v, w) > 0 we add arcs (s, w) and (v,¢) to £’ and define «'(s, w) =
l(v,w) and u'(v,t) = {(v,w). We also add symmetric arcs with antisymmetric capacities.
(Intuitively, we are providing a flow of [(v,w) “around” arcs (v,w) with positive lower

capacity bounds.)

LEMMA 26. The minimum cul in the transformed network is trivial (contains only the
node s) if and only if the original problem is feasible. The resulting mazimum flow gives a

solution to the circulation problem.
EXERCISE 6. Prove the lemma.

We can transform the minimum cost flow problem into the minimum cost circulation
problem as follows. First keep in mind that we can find a feasible flow using a maximum
flow algorithm. In the following discussion, we will assume that there exists a feasible
circulation. We add a new edge X from sink ¢ to source s in G' with «(X) = mU, [(X) =0
and ¢(X) = —nC —1, where U = max,ep{u(a)} and C' = max,ep{c(a)} (Figue X.32). Now

Cost =-nC-1
Capacity = muU

Ficure X.32. Adding an arc from s to ¢.
Circulations are more uniform objects than flows.
THEOREM 17. Fvery circulation can be decomposed into al most m cycles.
DEeFINITION 10. A megative cycle is a cycle I' that has a negative cost.

THEOREM 18. A circulation [ is optimal if and only if there are no negative cycles in
Gy.

Proof. Clearly, if I' € G4 is a negative cycle, we can increase the flow of each arc a € I’
by the amount min,er {us(a)}; the resulting pseudoflow is still a circulation and it has a

lower cost than before, so f is not optimal.
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In the other direction, let f* be some optimal circulation and suppose that f is not
optimal, i.e., ¢(f) > ¢(f*). Now f* — f is a collection of cycles (the sum of two circulations
is still a circulation, and a circulation with all of its flow reversed is still a circulation). But
the sum of the costs of these cycles is negative, because ¢( f*) — ¢(f) < 0, so there is at least
one negative cost cycle. Since this negative cycle is in f* — f, it must be in G;. Therefore,

nonoptimal flow f will always have negative cycles. m

This theorem leads us to Klein’s Algorithm:
While 1 negative residual cycle, find one and cancel it.

Note that we can find a negative cycle using the shortest path algorithm. Sounds like you
are looking for a augmenting path? You are right. By adding an arc (¢,s) with capacity
mU and a cost of —1 to an instance of maximum flow problem with cost of all arcs set to 0,
this algorithm turns out to be equivalent to the Ford-Fulkerson augmenting path algorithm
for the maximum flow problem. We know this is not very efficient.

It can be shown that if we find a cycle with the minimum mean cost using the algo-
rithm described a couple of lectures ago, this algorithm for the circulation problem becomes
strongly polynomial [19]. The corresponding algorithm for finding the maximum flow is the
shortest augmenting path algorithm.

Ford and Fulkerson studied the minimum-cost flow problem in the 50’s [10]. The first
polynomial-time algorithm was discovered in the early 70’s by Edmonds and Karp [8] and
independently by Dinits [47]. The first strongly polynomial algorithm is due to Tardos [43].

2. Prices and Reduced Costs

Next we add a function p : V — R, representing the price per unit of commodity at the
nodes. We define the reduced cost to be ¢,(v, w) = p(v) + c¢(v, w) — p(w). Intuitively, this is

the cost of buying a unit of commodity at v, shipping it to w, and then selling it at w.
LEMMA 27. For any cycle I' and price function p, ¢(I') = ¢,(I).

THEOREM 19. A circulalion [ is optimal if and only if there is a price funclion p such
that (v,w) € Gy implies that c,(v,w) > 0.

Proof. Suppose that such a cost function exists. Then there are no residual arcs of negative
reduced cost, thus no residual cycles with negative reduced cost. Hence by Theorem 17 and
Lemma 27, the circulation is optimal.

For the other direction, suppose that f is optimal. We add a new node s and connect it

with zero-cost arcs to every node in the graph. Then we compute d, the shortest (minimum
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cost) path distance function from s in Gy. Since there are no negative cycles, d is well-
defined. We know that d(w) < d(v) + ¢(v, w) if (v, w) € Gy but then ¢4(v, w) > 0. Clearly,
d qualifies for the desired function. m

3. Capacity Scaling

Let f, u, and ! be integer-valued functions. Suppose that f is optimal with respect to
p. If we add an arc (v, w) of unit capacity and arbitrary cost, then an integral optimal
flow can be found using one application of Dijkstra’s shortest-path algorithm (which runs

in O(m + nlogn) time using Fibonacci heaps) as follows.

(1) Compute the shortest path distance from w with respect to ¢, in Gy — (v, w).

(2) Set p' =p+d.

(3) If d(v) 4+ c(v,w) > 0 then f is optimal with respect to p.

(4) Otherwise, let I' = (sp(w, v)U (v, w)), where sp(w, v) is the shortest path from w to

v. Increase flow on I' by 1.

Proof of correctness. Before the new arc is added, there are no negative arcs with respect
to p', so there cannot be any negative cycles. Note that we can increase flow on [' by one,
because the flow and capacities are integral, and if we do so we saturate the new arc. Thus,
if any negative cycles remain after the augmentation they can only be from the creation of
a residual arc of negative reduced cost. But if (z,y) € I' then d(y) = d(z) + ¢,(z,y), so
¢p'(z,y) = 0. Thus, there are no negative cycles after the Step 4. m

Without loss of generality, assume that a flow of zero is feasible. Assume that the largest
capacity is U. Let P; be the problem obtained from the input problem by rounding the
input capacities to integer multiples of 2¢. We round upper bounds down, lower bounds up.
Note that the above assumption implies that the upper bounds are nonnegative and lower
bounds nonpositive, so the rounding preserves capacity antisymmetry.

Solution to F, is trivial. Given a solution of F;_;, we solve F; by adding a unit-capacity
arc (v,w) for every arc which had a 1 in the 7th bit of its capacity and then making
the circulation optimal using the above approach. Doing this at most m times solves the

problem F;. Thus the time to solve the input problem is O(m(m + nlog n)logU).

4. Assignment Problem

The assignment problem is as follows. Given an undirected bipartite graph G = (SUT, F)
and the weight function w : £ — R, find a maximum matching with the minimum weight.
The assignment problem can be reduced to the minimum cost circulation problem. We

construct a circulation network G’ from G by directing all arcs from S to T and assigning
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their costs to their weights. Add source s and sink ¢, zero cost arcs (s, vy), (vs,t) for all
vy €5, vy €T, Set capacities of all arcs to one. We also add a return arc (¢, s) of capacity
m and cost —nC' — 1, where C is absolute value of the biggest input edge weight. All lower
bounds of capacities are set to zero, and for every arc, a reverse arc is added (with cost and

capacities implied by antisymmetry). (Figure X.33)

3

@ (b)

Ficure X.33. (a) input graph G. (b) corresponding circulation network.

EXERCISE 7. Show thal there is a one-to-one correspondence belween matchings in the
input network and integral flows in the transformed network, and maximum matchings of

minimum cost correspond to minimum-cost circulations.

Note that the capacity-scaling algorithm introduced earlier solves the minimum-cost cir-
culation problem on G’ in O(mlogn) shortest path computations, because U = n. We can
do better, however.

Suppose we remove all arcs from s to nodes in .5, and then add the arcs back one by one.
Initially, the zero circulation is optimal w.r.t. the zero price function; after an arc addition,
we restore optimality as described above (note that the added arcs have unit capacity).
Since we add |S| < n arcs, and the time to restore optimality at each iteration is dominated

by a shortest path computation, we have the following result.

THEOREM 20. The assignment problem can be solved in O(n) shortest path computations

on graph.

The first algorithm to achieve this bound was the Hungarian Method [28].



LECTURE XI

Cost Scaling for Min-Cost Circulation Problem

Scribe: Michael Goldwasser

1. Cost Scaling

Next we describe cost-scaling algorithms for the minimum-cost circulation problem. The
first cost-scaling algorithm is due to Rock [38] and independently by Bland & Jansen [2].
The method we study is due to Goldberg and Tarjan [20].

Approximate Optimality. A key notion is that of approzimate optimality, obtained
by relaxing the complementary slackness constraints. For a constant € > 0, a pseudoflow f

is said to be e-optimal with respect to a price function p if, for every arc (v, w), we have
(3) fv,w) < u(v,w) = ¢,(v,w) > —¢ (e-optimality constraint).

A pseudoflow f is e-optimal if f is e-optimal with respect to some price function p.
An important property of e-optimality is that if the arc costs are integers and e is small

enough, any e-optimal circulation is minimum-cost.

THEOREM 21. If all costs are integers, € < 1/n, and circulation f is e-optimal w.r.t.

price function p, then f circulation f is optimal. [N.B. not necessarily w.r.t same pj]

Proof. We show that no negative cost residual cycles can exist. Let I be any simple cycle
in Gy. Then ¢(I') = ¢,(I') = Y crcpla) > |I'] - (=€) > —ne > —1. Since ¢(I') must be
integral, then ¢(I') > 0. m
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procedure min-cost(V, E, u, c¢);
[initialization]
€+ Cj
Y, p(v) < 0;
f < feasible circulation;

[loop]
while ¢ > 1/n do

(¢, f,p) < refine(e, f,p);
return(f);
end.

Ficure XI1.34. The cost-scaling method.
2. The Algorithm

We give here a high-level description of the cost-scaling method (see Figure X1.34). The
algorithm maintains an error parameter €, a circulation f and a price function p, with the
invariant that f is e-optimal with respect to p. The algorithm assumes we are given some
feasible circulation, and then sets ¢ = C' (or alternatively e = 2M'°&2€1) and p(v) = 0 for
all v € V. Any circulation is C-optimal, and so the invariant is initially true. The main
loop of the algorithm repeatedly reduces the error parameter e. When € < 1/n, the current
circulation is minimum-cost, and the algorithm terminates.

The task of the subroutine refine is to reduce the error in the optimality of the current
circulation. The input to refineis an error parameter €, a circulation f, and a price function
p such that f is e-optimal with respect to p. The output from refine is a reduced error
parameter €, a new circulation f, and a new price function p such that f is e-optimal with
respect to p. The implementation of refine described here reduces the error parameter € by
a factor of two.

The correctness of the algorithm is immediate from Theorem 21, assuming that refine
is correct. The number of iterations of refine is O(log(nC')). This gives us the following

theorem:

THEOREM 22. A minimum-cost circulation can be computed in the time required for

O(log(nC")) iterations of refine, if refine reduces € by a factor of at least two.

3. Refinement Based on Push-Relabel Operations

Next we describe an implementation of refine that is a generalization of the push-relabel
maximum flow algorithm.

The effect of refine is to reduce € by a factor of two while maintaining the e-optimality of
the current flow f with respect to the current price function p. The generic refine subroutine

is described on Figure XI.35. It begins by halving €, hence satisfying the reduction on the
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procedure refine(e, f,p);
[initialization]
€ €/2;
Y(v,w) € E do if ¢p(v,w) < 0 then begin f(v,w) < u(v,w); f(w,v) < —u(v,w); end;
[loop]
while 3 an update operation that applies do
select such an operation and apply it;
return(e, f,p);

end.

Ficure XI1.35. The generic refine subroutine.
push(v, w).
Applicability: v is active and (v, w) is admissible.
Action: send § = min(ef(v), uf(v, w)) units of flow from v to w.
relabel(v).
Applicability: v is active and Vw € V (uy(v,w) =0 or cp(v,w) > 0).
Action: replace p(v) by max(, vw)ep, {p(w) — c(v, w) — €}.

Ficure XI1.36. The update operations.

error. However the circulation is no longer guaranteed to be € optimal after the reduction,
and so the routine then saturates every arc with negative reduced cost. This converts the
circulation f into an e-optimal pseudoflow (indeed, into a 0-optimal pseudoflow), however
it is no longer guaranteed to be a circulation. Finally, the subroutine converts the e-optimal
pseudoflow into an e-optimal circulation by applying a sequence of the update operations
push and relabel, each of which preserves e-optimality.

The inner loop of the generic algorithm consists of repeatedly applying the two update
operations, described in Figure XI1.36, in any order, until no such operation applies. To
define these operations, we need to redefine admissible arcs in the context of the minimum-
cost circulation problem. Given a pseudoflow f and a price function p, we say that an arc
(v, w) is admissible if (v, w) is a residual arc with negative reduced cost. In similar fashion
as previous flow algorithms, we say a node is active if it has positive excess.

A push operation applies to an admissible arc (v, w) such that node v is active. It consists
of pushing § = min{e;(v), u;(v, w)} units of flow from v to w, thereby decreasing e;(v) and
f(w,v) by é§ and increasing e;(w) and f(v,w) by §. The push is saturating if u;(v,w) =0
after the push and nonsaturating otherwise.

A relabel operation applies to an active node v that has no exiting admissible arcs. It
consists of decreasing p(v) to the smallest value allowed by the e-optimality constraints,

namely max, w)eg, {—c(v, w) + p(w) — €}.
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If an e-optimal pseudoflow f is not a circulation, then either a pushing or a relabeling
operation is applicable. It is easy to show that any pushing operation preserves e-optimality.

The next lemma gives two important properties of the relabeling operation.

LEMMA 28. Suppose [ is an e-optimal pseudoflow with respect lo a price function p and
a node v is relabeled. Then the price of v decreases by at least € and the pseudoflow f is

e-optimal with respect to the new price function p'.

Proof. Before the relabeling, ¢,(v,w) > 0 for all (v,w) € £}, i.e., p(v) > p(w) — ¢, (v, w)
for all (v,w) € E;. Thus p'(v) = max(, wier, {P(w) — c(v,w) — €} < p(v) — e

To verify e-optimality, observe that the only residual arcs whose reduced costs are affected
by the relabeling are those of the form (v, w) or (w,v). Any arc of the form (w,v) has its
reduced cost increased by the relabeling, preserving its e-optimality constraint. Consider
a residual arc (v, w). By the definition of p’, p'(v) > p(w) — ¢(v,w) — €. Thus ¢, (v, w) =
c(v,w)+p'(v) — p(w) > —¢, which means that (v, w) satisfies its e-optimality constraint. m

Since the update operations preserve e-optimality, and since some update operation ap-
plies if f is not a circulation, it follows that if refine terminates and returns (¢, f, p), then f
is a circulation which is e-optimal with respect to p. Thus refine is correct.

Next we analyze the number of update operations that can take place during an execution
of refine. We begin with a definition. The admissible graph is the graph G, = (V, E4) such
that F4 is the set of admissible arcs. As refine executes, the admissible graph changes. An

important invariant is that the admissible graph remains acyclic.

LEMMA 29. Immedialely after a relabeling is applied to a node v, no admissible arcs enter

Proof. Let (u,v) be a residual arc. Before the relabeling, c,(u,v) > —e¢ by e-optimality. By
Lemma 28, the relabeling decreases p(v), and hence increases ¢,(u,v), by at least €. Thus

¢p(u,v) > 0 after the relabeling. m
COROLLARY 3. Throughout the running of refine, the admissible graph is acyclic.

Proof. Initially the admissible graph contains no arcs and is thus acyclic. Pushes obviously

preserve acyclicity. Lemma 29 implies that relabelings also preserve acyclicity. m

LeEMMA 30. Let f be a pseudoflow and f' a circulation. Then for any node v with e (v) >
0, there is a node w with e;(w) < 0 and a simple path I' from v to w such that I' € E; and
% e Eyp.
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Proof. Let v be a node with e;(v) > 0. Define G4 = (V, E), where Ey = {a|f'(a) > f(a)},
and define G_ = (V, E_), where £_ = {a|f'(a) < f(a)}. Note £, C Ey and E_ C E}.
Furthermore, (z,y) € £y < (y,z) € E_ by antisymmetry. Thus to prove the lemma it
suffices to show the existence of some node with deficit excess which is reachable from v in
Gy

Let S be the set of vertices reachable from v in Gy and let S be the complement of S.
Then for all (z,y) € (S,5), f(z,y) > f'(z,y), for otherwise y € S. Now consider

0 = Z(x,y)e(sg)mg (=) since f’ is a circulation
< E(x,y)e(sﬁ)np; [z, y) holds term by term
= Lo y)e(s5)nE fle,y) + 2 (2,9)€(5,8)E f(z,y) by antisymmetry
=Y eyesvine J(@,Y) by definition of S
== Yees € (2) by antisymmetry

Since v € S, ey (v) > 0 so some node w € S must have e;(w) < 0 as desired. m

LeMMA 31. The price of a node v decreases by at most 3ne during an execution of refine.

Proof. Let f' and p’ be the input circulation and price functions on entry to refine such
that f’ is 2e-optimal with respect to p’. Suppose a relabeling causes the price of a node v to
decrease. Let f be the pseudoflow and p the price function just after the relabeling. Then
e;(v) > 0. Let I' C F; be the simple path from v to w whose existence was shown by the
previous lemma.

By e-optimality of f, —[I'[e <37, jer ¢o(2,y) = p(v) — p(w) + ¢(T).

By 2e-optimality of f', =2|T'le <37, oyern ¢ (¥, @) = p'(w) — p'(v) + c(TH).
But ¢(T') = —¢(T') by cost antisymmetry. Furthermore, p(w) = p'(w) since during refine,
the initialization step is the only one that makes the excess of some vertices negative, and
a node with negative excess has the same price as long as its excess remains negative. We
now add the two inequalities above to obtain —3|I'le < p(v) — p/(v). Rearrange to get
P’ (v) — p(v) < 3|l'|e < 3ne as desired. ®
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Cost Scaling and Strongly Polynomial Algorithms

Scribe: Jeremy Gaston

1. Overview
In this lecture we continue discussing the cost-scaling approach for the minimum-cost
circulation problem. We then discuss how to make it strongly polynomial.
2. Cost-Scaling

Last time we showed that the price of a node v decreases by at most 3ne during an

execution of refine. We now can count update operations.
LEMMA 32. The number of relabelings during an execulion of refine is O(n?).

Proof. During one execution of refine, each node decreases in price by at most 3ne. Each
relabelling decreases price by € or more, as we showed last time. Thus there are at most 3n

relabelings per node and 3n(n — 1) in total, hence O(n?). m

Note that the work required for these relabelings is O(nm), for the same reasons as in

the max flow case.

LeMmMA 33. The number of saluraling pushes during an execution of refine is al most

3nm, hence O(nm).
Proof. Same as in the max flow case. m

LEMMA 34. The number of nonsaturaling pushes during one execulion of refine is at

most 3n*(m + n), hence O(n*m).
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Proof. For each vertex v, let ®(v) be the number of vertices reachable from v in G4, the
admissible graph of residual arcs with negative reduced costs. Let & = 0 if there are no
active vertices, and let ® = Y {®(v)|v is active} otherwise. Throughout the running of
refine, ® > 0. Initially ® < n, since G4 has no arcs (all negative reduced cost arcs were
saturated) and so each active node can only reach itself.

Consider the effect on ® of update operations. A nonsaturating push decreases ® by
at least one, for the following reason: suppose we perform a nonsaturating push across arc
(v,w). Then we remove ®(v) from our summation and at most add ®(w). But ®(w) < ¢(v)
since (G4 is always acyclic by a previous lecture’s corollary, so our summation decreases by
at least one.

A saturating push can increase ® by at most n, since at most one inactive vertex becomes
active, and it can reach at most n nodes. Finally, if a vertex v is relabeled, ® also can increase
by at most n, since ®(w) for w # v can only decrease, since after w is relabelled, it has no
admissible arcs entering it; thus, there are no new paths from any v to any w through w.
The total number of nonsaturating pushes is thus bounded by the initial value of ® plus the
total increase in ® throughout the algorithm, i.e., by n + 3n*(n — 1) 4+ 3n?m < 3n*(m+n).
|

2.1. Maximum Node Discharge and Wave Methods. In these algorithm varia-
tions, we maintain the nodes in topologically sorted order, which is possible since the ad-
missible graph is acyclic. We then define discharge as before, in which we take a node and
push from it until we can’t push anymore, and then we relabel it, if it still has excess. Next
we will define the notion of a mazimal node. In the admissible graph, a node is maximal if
there is no path to it from any other node. In the topological sort, this would correspond
to the leftmost node in a linear ordering of the sort. This ordering can easily be maintained
by push and relabel operations. When we push, we don’t need to do anything; when we
relabel a node, it has no incoming arcs, so it can be placed in the leftmost position.

There are two obvious ways we can process this linear topological list of nodes. In either
case, we march down the list, and if a node is active, we discharge it. If we have to
relabel it, we either (1) restart at the leftmost node — the newly relabelled one — (Maximal
Node Discharge algorithm), or (2) we keep marching down the list and only go back to the
leftmost one when we’ve finished discharging the rest of the active nodes to the right (Wave
algorithm). The following analyses apply to both methods. These analyses depend on the
notion of a phase, which is simply the period between two relabelings, as defined before. In

either algorithm, during a phase, we only move rightward along the list of nodes.

LEMMA 35. Discharge uses relabel correctly.
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Proof. Same as in the max flow case. m

As before, we process nodes in topological order with respect to the admissible graph

Ga.

LEMMA 36. There are O(n®) nonsaturaling pushes in the wave/mazimal-node-discharge

implementation of refine.

Proof. Same as in the max flow case. (Basically we have O(n*) phases, and during each

one we have only one nonsaturating push per node.) m

THEOREM 23. The running time for the wave/mazimal-node-discharge implementation

is O(n®log Cn).

Proof. We have O(log C'n) iterations and by the previous lemma, we have O(n?) nonsatu-

rating pushes in each iteration, so the total running time is O(n*logCn). m

2.2. Running Times. We now list running times for several methods; some of these

methods use sophisticated data structures.

O(nmlog ’:71—2 log nC') cost scaling [20]
O(mlogU(m+ nlogn)) capacity scaling [8, 47]
O(nmlognC'loglog U) cost and capacity scaling [1]
O(mlogn(m + nlogn)) capacity scaling with edge contractions [34]

3. Strongly Polynomial Algorithms

We now discuss several strongly polynomial algorithms for the minimum-cost circulation
problem based on cost scaling.

We start by taking a closer look at the notion of e-optimality.

3.1. Fitting Price Functions and Tight Error Parameters. The definition of e
optimality motivates the following two problems:

1. Given a pseudoflow f and a constant ¢ > 0, find a price function p such that [ is
e-optimal w.r.t. p, or show that there is no such price function.

2. Given a non-optimal pseudoflow f, find the smallest € > 0 such that f is e-optimal.

LEMMA 37. A graph G contains a shortest path tree if and only if G does not contain
a negative-cost cycle. A spanning tree T rooted al s is a shortest path tree if and only if

c(v,w) +d(v) > d(w) for every arc (v,w) in G.
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Define a new cost function ¢ : E — R by ¢{®) (v, w) = ¢(v,w) + €. Extend the residual
graph G; by adding a single vertex s and arcs from it to all other vertices to form an
auziliary graph G oz = Vauz, Fauwz) = (V U {s}, E; U ({s} x V)). Extend ¢® (v, w) to Guue
by defining c(9)(s,v) = 0 for every arc (s,v), where v € V.

THEOREM 24. Pseudoflow f is e-optimal if and only if G ... contains no cycle of negative
) -cost. If T is any shortest path tree of G 4 with respect to the arc cost function '), and

d is the associated tree cost function, then [ is e-optimal with respect to the price function

p defined by p(v) = d(v) for allv e V.

Proof. Suppose f is e-optimal. Any cycle in G4y, is a cycle in Gy, since vertex s has
no incoming arcs. Let I' be a cycle of length [ in G4,,. Then ¢(I') > —le, which implies
c9(T) = ¢(T') + le > 0. Therefore G, contains no cycle of negative c(9)-cost.

Suppose Glay, contains no cycle of negative c(“-cost. Then by the previous lemma, Gyyp
has some shortest path tree rooted at s. Let T be any such tree and let d be the tree cost
function. By the previous lemma, ¢{*)(v,w) + d(v) > d(w) for all (v,w) € E;, which is
equivalent to ¢(v, w) + d(v) — d(w) > —e for all (v, w) € £;. But these are the e-optimality

constraints for the price function p = d. Thus f is e-optimal with respect to p. ®m

Using the theorem, we can solve the first problem by constructing G, and finding either
a shortest path tree or a negative-cost cycle. Constructing G, takes O(m) time. Finding
a shortest path tree or a negative-cost cycle takes O(nm) time using the Bellman-Ford
shortest path algorithm. Now we show how to solve the second problem in O(nm) time as

well.

3.2. Tight Error Parameters. For ¢ > 0, we say that f is e-tight if f is e-optimal
and for any € < ¢, f is not €-optimal. For a circulation f we define €(f) to be zero if f is
optimal and to be the unique number ¢ > 0 such that f is ¢-tight otherwise. We use €(f)
as a measure of the quality of f. Let (G, 1) denote the minimum-mean cost of a cycle in G

w.r.t. cost function c. Recall that the minimum-mean cycle can be found in O(nm) time.
THEOREM 25. Suppose a pseudoflow f is not optimal. Then e(f) = —pu(Gy, c).

Proof. Assume f is not optimal. Consider any cycle I'in ;. Let the length of I' be [. For
any ¢, let ¢(9 be the cost function defined above: ¢©)(v,w) = ¢(v,w) + € for (v,w) € E.
Let € be such that f is e-tight, and let © = p(Gy,c). By the theorem proved above,
0 < () = ¢(') + le, i.e., ¢(T')/l > —e. Since this is true for any cycle I', p > —e, i.e.,
€ > —pu. Conversely, for any cycle I', ¢(I')/l > p, which implies ¢(=#)(I') > 0. This implies
—p>e N
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The following observation is helpful in the analysis to follow. Suppose [ is an e-tight
pseudoflow and € > 0. Let p be a price function such that f is e-optimal with respect to p,
and let I be a cycle in G; with mean cost —e. Since —e¢ is a lower bound on the reduced

cost of an arc in Gy, every arc of I' must have reduced cost of exactly —e.

3.2.1. Fixed Arcs

Intuitively, the main idea behind the strongly-polynomial bound is the observation that
if an arc cost is “large” compared to €, then all e-optimal circulations must have the same
value on this arc, and therefore refine does not change flow on this arc. We cannot use the
input cost of arcs, however, since cost of any specific arc can be forced to any desired value
by changing price of an end point of the arc. We use optimal reduced costs ¢* instead, where
¢* = ¢,+ for an optimal price function p* (i.e., there is a circulation f* that is optimal w.r.t.
p*). Note that the algorithm does not “know” ¢*, which is introduced only for the sake of

analysis.

THEOREM 26. Suppose an arc a is such |c*(a)| > ne. Then, for any lwo e-optimal
circulations f', f", we have f'(a) = f"(a).

Proof. By antisymmetry, it is enough to prove the theorem for the case ¢, (v, w) > ne. (If
flow is fixed on an arc, it’s fixed on the reverse arc.) Let f* be optimal with respect to
p*; note that f*(a) = I(a), otherwise the reverse arc would have negative reduced cost and
residual capacity, implying that the flow is not optimal. Note that f* is trivially e-optimal
for e. Now, it is enough to show that if f is a circulation such that f(a) # f*(a), then f is
not e-optimal.

Consider G5 = {z € E|f(z) > f*(¢)}. Note that G is a subgraph of G;., and a is an
arc of G'5. Since f and f* are circulations, G5 must contain a simple cycle I' that passes
through a. Let [ be the length of I'. Since all arcs of I' are residual arcs in G+, the cost
of ' is at least c¢(a) > ne. Now consider the cycle I obtained by reversing the arcs on T
Note that ' is a cycle in G. = {z € E|f(z) < f*(2)} and is therefore a cycle in G;. By
antisymmetry, the cost of ' is less than —ne and thus the mean cost of T is less than —e.

Theorem 25 implies that f is not e-optimal. =

We say that an arc @ € F is e-fized if |¢*(a)| > ne. The above theorem says that all
e-optimal circulations agree on e-fixed arcs. Thus if all arcs are fixed, the circulation must
be optimal. Define F, to be the set of e-fixed arcs. Since the cost-scaling method decreases
€, an arc that becomes e-fixed stays e-fixed. We show that when e decreases by a factor of

n, a new arc becomes e-fixed.
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procedure min-cost(V, E, u, c);
[initialization]
€+ Cj
Y, p(v) < 0;
V(v,w) € E, f(v,w) + 0;
[loop]
while € > 0 do begin
(%) find )\ and p, such that f is A-tight with respect to p,;
if A > 0 then (¢, f,p) « refine(A, f,pa)
else return(f);
end.

Ficure XII1.37. The strongly polynomial algorithm.

LEMMA 38. Assume € < £. Suppose that there exisls an e-tight circulation f. Then F!

properly contains F..

Proof. Since every ¢-optimal circulation is e-optimal, we have F, C F’. To show that the
containment is proper, we have to show that there is an ¢/-fixed arc that is not efixed.
Since the circulation f is e-tight, there exists a price function p such that f is e-optimal
with respect to p, and there exists a simple cycle I in GGy every arc of which has reduced
cost of —e¢, by an earlier observation. Since increasing f along I' preserves e-optimality, the
arcs of [' are not e-fixed.
We show that at least one arc of I' is €¢/-fixed. Let f* be as above. Since the mean cost

of I'is —e, there is an arc z of I' with ¢*(z) < —e < —ne€’. This arc is e-fixed. m

3.3. Strongly Polynomial Cost Scaling. Our original cost scaling method has the
disadvantage that the number of iterations of refine depends on the magnitudes of the costs.
If the costs are huge integers, the method need not run in time polynomial in n and m; if the
costs are irrational, the method need not even terminate. However, a natural modification
of the method produces strongly polynomial algorithms.

The main idea of this modification is to improve € periodically by finding a price function
that fits the current circulation better than the current price function. The changes needed
to make the cost-scaling approach strongly polynomial are to add an extra computation
to the main loop of the algorithm and to change the termination condition. Before calling
refine to reduce the error parameter ¢, the new method computes the value A and a price
function py such that the current circulation f is A-tight with respect to p,. The strongly
polynomial method is described in Figure XII.37. The algorithm terminates when the
circulation f is optimal, i.e., A = 0.

The time to perform line () is O(nm). Since the implementation of refine that we have

considered has a time bound greater than O(nm), the time per iteration in the new version
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of the algorithm exceeds the time per iteration in the original version by less than a constant
factor. Since each iteration at least halves ¢, the bound of O(log(nC')) on the number of
iterations derived before remains valid, assuming that the costs are integral. For arbitrary

real-valued costs, we shall derive a bound of O(mlogn) on the number of iterations.

THEOREM 27. The total number of iteralions of the while loop in procedure min-cost is
O(mlogn).

Proof. Consider a time during the execution of the algorithm. During the next O(logn)
iterations, either the algorithm terminates, or the error parameter is reduced by a factor
of n. In the latter case, Lemma 38 implies that an arc becomes fixed. If all arcs become
fixed, the algorithm terminates in one iteration of the loop. Therefore the total number of

iterations is O(mlogn). m

The best strongly polynomial implementation of the generalized cost-scaling method, due
to Goldberg and Tarjan, is based on the dynamic tree implementation of refine, and runs
in O(nm?log(n*/m)logn) time.

As a side note, it can also be shown that if f is e-optimal w.r.t. p and |¢,(a)| > 2ne, then
arc a is e-fixed, by a proof similar to the one for Theorem 26. This is a practical result,
because we know ¢, (a), whereas we don’t actually know ¢*(a). Implementing this fact can
allow us to get rid of arcs as they become fixed, and such implementations can speed up
the algorithm.

The following material was not given in class, but its result (that Klein’s cycle-canceling

algorithm can now be made strongly polynomial) was briefly mentioned.

4. Minimum-Mean Cycle-Canceling

In this section we use ideas of behind the analysis of cost scaling to show that Klein’s
cycle-canceling algorithm becomes strongly polynomial if a careful choice is made among
possible cycles to cancel. Recall that Klein’s algorithm consists of repeatedly finding a
residual cycle of negative cost and sending as much flow as possible around the cycle. This
algorithm can run for an exponential number of iterations if the capacities and costs are
integers, and it need not terminate if the capacities are irrational. Goldberg and Tarjan
[19] showed that if a cycle with the minimum mean cost is canceled at each iteration, the
algorithm becomes strongly polynomial. We call the resulting algorithm the minimum-mean
cycle-canceling algorithm.

The minimum-mean cycle-canceling algorithm is closely related to the shortest augment-
ing path maximum flow algorithm. The relationship is as follows. If a maximum flow

problem is formulated as a minimum-cost circulation problem in a standard way, then
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Klein’s cycle-canceling algorithm corresponds exactly to the augmenting path maximum
flow algorithm, and the minimum-mean cycle-canceling algorithm corresponds exactly to
the shortest augmenting path algorithm.

Let f be an arbitrary circulation, let € = €(f), and let p be a price function with respect
to which f is e-optimal. Holding € and p fixed, we study the effect on €(f) of a minimum-
mean cycle cancellation that modifies f. Since all arcs on a minimum-mean cycle have
negative reduced cost with respect to p, cancellation of such a cycle does not introduce a

new residual arc with negative reduced cost, and hence €(f) does not increase.

LEMMA 39. A sequence of m minimum-mean cycle cancellations reduces €( f) to at most

(1 —1/n)e, i.e., to at most 1 — 1/n times its original value.

Proof. Let p a price function such that f is e-tight with respect to p. Holding ¢ and p
fixed, we study the effect on the admissible graph G4 (with respect to the circulation f
and price function p) of a sequence of m minimum-mean cycle cancellations that modify f.
Initially every arc (v, w) € E, satisfies ¢, (v, w) > —e. Canceling a cycle all of whose arcs
are in I/, adds only arcs of positive reduced cost to E; and deletes at least one arc from
FE 4. We consider two cases.

Case 1: None of the cycles canceled contains an arc of nonnegative reduced cost. Then
each cancellation reduces the size of F,, and after m cancellations E, is empty, which
implies that f is optimal, i.e., €(f) = 0. Thus the lemma is true in this case.

Case 2: Some cycle canceled contains an arc of nonnegative reduced cost. Let I' be the
first such cycle canceled. Every arc of I' has a reduced cost of at least —¢, one arc of I' has
a nonnegative reduced cost, and the number of arcs in I' is at most n. Therefore the mean
cost of I'is at least —(1 — 1/n)e. Thus, just before the cancellation of I', e(f) < (1 —1/n)e

by Theorem 25. Since €(f) never increases, the lemma is true in this case as well. ®

Lemma 39 is enough to derive a polynomial bound on the number of iterations, assuming

that all arc costs are integers.

THEOREM 28. If all arc cosls are inlegers, then the minimum-mean cycle-canceling al-

gorithm terminates after O(nmlog(nC)) iterations.
An argument similar to that of the proof of Theorem 27 yields the following result.

THEOREM 29. For arbitrary real-valued arc costs, the minimum-mean cycle-canceling al-

gorithm terminates after O(nm?logn) cycle cancellations.
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THEOREM 30. The minimum-mean cycle-canceling algorithm runs in O(n*m?logn) time
on networks with arbitrary real-valued arc costs, and in O(n*m? min{log(nC), mlogn}) time

on networks with integer arc costs.

Proof. Immediate from Theorems 28 and 29. m

Radzik and Goldberg [37] show that the bounds stated in Theorems 28 and 30 can be

improved by a factor of log n, and the improved bounds are tight up to a constant factor.



LECTURE XIII

The Multicommodity Flow & Concurrent Flow Problems

Scribe: David Chang

1. The Multicommodity Flow Problem

The multicommodily flow problem is a classical problem of finding feasible flow on a
network with commodity demands (each commodity having its own source and sink) and
capacity constraints. An instance of the multicommodity flow problem consists of a graph
G = (V, F), capacity function v : ¥ — R*, and demand specifications for each commodity.
For each commodity ¢ = (1,..., k), the specification contains the source s;, the sink ¢;, and
a nonnegative demand d;. We assume that m > n, G has no parallel arcs, and capacities

and demands are integers. A multicommodity flow f = (fi,..., fx) is feasible if:

(1) Commodity demands are satisfied with conservation by every commodity ¢ at every
node v
di ifv= ti,
Z filu,v) — Z filv,w)=<¢ —d; ifv=s;,
(u,v)EE (v,w)eE 0 otherwise.

(2) Capacity constraints are satisfied at every arc a
f(s) = E fila) < u(v,w).
i=1,...,k

Essentially, we have a network with many commodities, with every node being a possible
source or sink for any given commodity. The problem is to find a feasible flow which ships
the demand for each commodity from its source to its sink, without overflowing the shared
capacities. In the case of only one commodity, this problem is very similar to the max-flow
problem except instead of trying to find the maximum flow, we are looking for a flow of

value d;.

83



84 XIII. THE MULTICOMMODITY FLOW & CONCURRENT FLOW PROBLEMS

Note that although the multicommodity flow problem looks like a max-flow problem,
there are two important aspects of the max-flow problem that do not apply. First, the
max-flow/min-cut theorem does not hold. Second, the integrality theorem does not hold.
Figure XIII.38 demonstrates these facts. Notice that every nontrivial min-cut has capacity
of 1. However, each unit of commodity flowing from its source to its destination uses two
units of available capacity and the total available capacity is 3. Therefore if all demands
are set to 1, the problem is not feasible even though the total demand across any cut is

equal to the capacity of the cut.

S2,T3

S1,T2 } 1 S3,T1

mincut =1
Ficure XII1.38. Multicommodity problem with three commodities

We can generalize the multicommodity flow problem by adding a cost per unit of flow
¢(a) for every arc a, and asking for a feasible flow of minimum cost. An even more general

problem has (potentially different) costs ¢;(a) for every commodity.

2. Concurrent Flow Problem

The concurrent flow problem is an optimization version of the multicommodity flow prob-
lem. Instead of finding a feasible flow or showing that a feasible flow does not exist, the the
goal is to maximize z, the fraction of the commodity demands, such that the problem with
demands zd; is feasible. An equivalent problem is to minimize A such that the problem with

demands d; and capacities Au(a) is feasible. We will look at an algorithm minimizing A.
2.1. Definitions and Notation.

DEFINITION 11. The congestion of an arc is defined by A(a) = f(a)/u(a).
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Let A = max,ep A(a). Certainly if we increased capacities by the factor of A, we would
have a feasible multicommodity flow. However, it is conceivable that the flows can then be
rerouted so that we do not have to increase capacities so much. Let A* be the optimal value
of A, or the minimum value by which we can multiply the capacities and still get a feasible

problem.
DEFINITION 12. The length function { : E — R%Y is a nonzero, nonnegative function.

DEFINITION 13. The dist,(v, w) denotes the shortest path distance in G from v to w with

respect to L.

To simplify notation, we sometimes view length, capacity, and flow functions as vectors
indexed by arcs. Given two vectors @ and b, let aob =37, ,\cp a(v, w)b(v, w). We also use

the standard scalar-vector multiplication.

LEMMA 40. For a multicommodity flow f satisfying demands d; and capacities Au and a
length function £ we have
k
Auol 2 Z d’L.Stz(SZ’, tz)dz
i=1
Proof. Au o { represents the total “volume” of network (each term is “width” of an arc
times its length) while Y5, dist,(s;, t;)d; represents the lower bound on flow volume since

each commodity i flows on paths which are at least as long as the shortest path. =

DEFINITION 14. Given a length function £, we define the cost of the flow of commodily ¢
by C; = f;ol.

Let C} () be the value of the minimum-cost flow f; satisfying the demands of commodity

© with costs £ and capacities Au.

THEOREM 31. For f, C;, and C; () as above,

x

k
Auol > "Ci > > Cr(A).
i=1 i=1

-
I

A multicommodily flow f minimizes X iff there is a length function £ for which the above

terms are equal.

Proof. The first inequality is follows since Auof represents the total volume of the network
and Zle C; represents the flow volume for some flow. The second inequality hold term by
term since cost of a flow is at least as big as that of the minimum cost flow.

The second claim of the lemma is not needed for the analysis of the algorithm we are

interested in. Its proof is left as an exercise. m
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COROLLARY 4. For [, £ as above,
i Cr (Y

wolf

is a lower bound on \*.

Proof. From Theorem 31, we have
k k
Xlou> > Cr(A) > > Cr(N).
i=1 i=1
Rewriting, we get

fou

2.2. Relaxed Optimality. A multicommodity flow is e-optimal if the following relazed

optimality conditions are satisfied.

(4) Viv,w)e E (14 ¢)f(v,w) > Au(v,w) or u(v,w)l(v,w)< —(uol).

(5) (1-2@2@ < ZC;(/\).

The first condition states that either an arc is close to being saturated, or its volume is
small compared to the total volume. The second condition states that the total cost of f

with respect to { is close to optimal. From this point forward, we will assume that e < 1/8.
THEOREM 32. If f, £, and € salisfy the relaxed oplimality conditions, then X\ is alt most

(14 5¢)A*.

Proof. From condition (4), we have

ST (14 o) f (v, w)(v, w) + A—uo ) > Auo L.
(v,w)EE m
since both (14€) f(v, w)f(v,w) > Auol and AZuol > Auol .

Rewriting, we get
(1+€)fol>Auol(l—e¢)

or

1—c¢ 1
< = - < ¥ .
(6) 1+€/\uo€_fo€ zi:Cl_l—QGZCZ(/\)

By Corollary 1 and the previous inequality,

A > 2 Cr () > (1_6)(1_26),\2 (1 —4e)A.
wol I+
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Since € < 1/8, this implies A < (14 5¢)A*. m
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LECTURE XIV

The Concurrent Flow Algorithm

Scribe: Matt Carlyle

1. Preliminaries

Recall from last time that we had two conditions for e-optimality in the concurrent flow

problem:

(7) Vae £l (1+¢€)f(a) > Au(a) or wu(a)l(a)

IN

(8) (1-2@2@ < ZC;(/\).

The first condition states that either an arc is close to being saturated, or its “volume” is
small compared to the total “volume”. The second condition states that the total cost of f

with respect to £ is close to the optimal.

1.1. Exponential Length Function. The algorithm we develop for solving this prob-
lem to e-optimality requires a length function which will help ensure that conditions 1 and 8
are met. One such function was proposed by Shahrokhi and Matula [39], who were the first
to use an exponential length in the context of uniform capacities. We use the generalization
of this idea which was introduced by Leighton et. al. [30]

Define

(9) lr(a) = )
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where

(10) Aa) = L

is the load on arc a, and A is the maximum such load over all arcs.

Note that this penalizes large loads severely; this leads us to try to find an « large
enough to force condition 1 to be satisfied. In other words, we want to find an « so that if

(14 ¢€) f(a) < Au(a) then u(a)l(a) < =(uol)

LEMMA 41. If

(11) a>

then condition 1 holds for (f, ().

Proof. We can rewrite

€ €
- Y _ = aX(a)
(uol) = - g €

m acE

> iea)\
m

and since, by assumption, arc a is not close to being saturated,

u(a)l(a) = e
< N/
so we now want:
ln(%)—}—a/\ > (101\6)
04/\(1—1_1}_6) > (")
a > (1;6)111(?).

2. The Algorithm

The algorithm maintains a multicommodity flow f satisfying the demands and the corre-
sponding exponential length function £. By Lemma 41, the first relaxed optimality condition
is always satisfied. It starts with an initial solution whose associated A is bounded by k\*,
and iteratively improves the current solution until its value is within a factor of € of our

optimal flow value. It accomplishes this by using a potential function to ensure a rapid

decrease in the current value of A.



90 XIV. THE CONCURRENT FLOW ALGORITHM

2.1. Potential Function. The algorithm will attempt to minimize A indirectly, by
actually minimizing a potential function that is dominated by the largest of the A(a) values.

We define this function as follows:
(12) ®=uol;

When @ is defined in this manner it is easy to see that the values of A(a) which are close

to the maximum will dominate. Hence, minimizing ® effectively minimizes A.

2.2. Initial Solution. The algorithm starts with an initial solution f such that A < kA*.
Such a solution is obtained by finding, for each commodity ¢, a maximum flow g; in the
network with source s;, sink ¢;, and capacity function u, and setting f;(a) = gi(a)lg—zl, where
|g;| denotes the value of g;. It is easy to see that for the resulting flow f, A < kA*. The
length function £ defined by the initial flow is also computed.

2.3. Improving the Current Solution. At each iteration, the algorithm iteratively
improves the current flow, until both conditions for e-optimality are satisfied. The main
loop of the algorithm is as follows (parameters a, Ag and o will be explained in the following

section):

(1) If condition (8) holds then terminate.
(2) Compute f7, the minimum-cost flow for commodity 7, Vi € K, with capacities Au

and costs £;.

(3) Compute £, the multifiow for commodity i, Vi € K, where

(13) f(i):(f17f27"'7(1_U)fi+gfi*7'--7fk)

) Let ¢ be the index of the f(i) which minimizes ® = w0 {4 .
5) [ JO.
) Reset parameters A\g, @, and o, as described below.

7) Goto step 1.

The parameters Ay, o and o are set as follows. Let Ay be the value of A after initialization
or during the last change in a and o. The values are set to o = 2(1 4+ €)A\;'e ! In(me?)

and 0 = and are updated when A decreases to Aq/2 or less.

_€
daXg!

2.4. Algorithm Analysis. Intuitively, an iteration of the algorithm replaces a o frac-
tion of a commodity by the same fraction of the optimal flow of this commodity.

The next lemma shows that when f; is rerouted, ® decreases by almost ao(C; — CF(})).
Let @ and @, be the values of the potential function before and after the rerouting, respec-

tively.
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LEMMA 42.

¢ — &, > ac(C; — CF(A) — €Cy).

Proof. Let £ and ¢ be the length functions before and after the rerouting. By Taylor’s
theorem, for |t| < ¢/4 < 1/4 we have

et < e 4 te® 4+ %|t|e”.
Taking z = %f(a) and ¢ = %(fl* (a) — fi(a)), we obtain

ao [J872)

(f7 (a) = fi(a)){(a) +

¢ (a) < £(a) + /i (a) = fi(a)[£(a).

- u(a) 2u(a)
We have
-8, = ((—0)ou
eao
> ao(fi— f})ol— 7|fi* — filot

> ao(C; — CF(N)) — eacC;.
The last line follows by definition of C; and C}(A) and by the fact that C; > C;(A) > 0. m

Note that if the current flow does not satisfy the second relaxed optimality condition,
then the value of C; — Cf()) is large for some 7 and ® decreases significantly. The following

lemma formalizes this statement.

LEMMA 43. Suppose 0 = O (j) and [ does nol salisfy the second relazed optimalily

condition. Then the decrease in ® due to a rerouling step is Q(Ek—ZCI))

Proof. Since the maximum decrease in @ is at least the average, we have

1 *
o — ¢a Z EO&O’ XZ:(CZ — Cz (A) — 601)

[872)

= (1 -29C = Ci () +e3-C)

€O
= 5 2G

acl — ¢

>
- k 14e€

eAd

The fourth line follows from the assumption that f does not satisfy the second relaxed

optimality condition. The last line follows from the assumption on o. ®
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LEMMA 44. The concurrent flow algorithm as presented here runs in

2

k m
min-cost flow computations.

Proof. Lemma 43 implies that, after ¢ iterations, ® decreases by a factor of Q[(1 — %)Z],
which means that, after O(%) iterations ® will decrease by a constant factor. An iteration
of the algorithm uses & min-cost flow computations.

Also recall that
¢ = wol

= Y _u(a)t;(a)
_ Zeoc)\(a)

SO

d < me*t

and

so ® can change by at most me3".

Because of this, the algorithm will halt after O(% log me%) iterations.

log(me%) = logm + ¥log%

so the algorithm halts after O(% log ) iterations.

We have to perform the algorithm log &k times, each iteration of which is £ min-cost flow
computations.

Therefore the total number of min-cost-flow computations is O(’:—: log k log ™)

It can be shown that if a commodity is selected at each iteration uniformly at random
and rerouted if ® decreases, then the bound on the expected number of iterations remains

the same, but each iteration uses one min-cost flow computation instead of k. See [15].



LECTURE XV

The General Matching Problem

Scribe: Sandeep Juneja

Matching in bipartite graphs has already been discussed in earlier lectures. Today we ex-
tend the discussion to include non-bipartite matching on undirected graphs. The references

for this lecture are [7, 35, 44]. The lecture was given by Sherry Listgarten.

1. The Matching Problem

A matching M of a graph G(V, F) is a subset of edges with the property that no two
edges of M share an endpoint. In Figure 1, for example, M, = {[b, ¢|, [d, €], [f, k], [g, j]} and
M, = {[a,b],[c,e€],[d, g],[f, h],[i, 7]} are matchings. The size of a matching is the number
of edges in the matching; the mazimum malching problem is that of finding a matching of
maximum size. It is clear that for any matching M, [M| < |V|/2. In Figure 1, |V| = 10
and |M,| = 5, so M, is a maximal matching. Edges in a matching M are called matched
edges. All other edges are called free (or unmatched) edges. If {u, v} is a matched edge then
v is the mate of u (i.e., v = mate(u)). All nodes that are not incident upon any matched
edge are called free. The remaining nodes are matched.

A path (resp. cycle) in a graph with matching M is called an alternating path (resp. cycle)
if its edges alternate between matched and free. An augmenting path is a simple alternating
path that begins and ends at free nodes. In Figure 1, path p = [a,d, e, f, h,g,7, 1] is an
augmenting path.

THEOREM 33. A matching M in G(V, E) is maxzimal <= There are no augmenting paths
in G(V, E).

Proof. = Suppose there exists an augmenting path P with respect to a matching M
in G(V,F). Then a matching of size |[M| 4+ 1 can be constructed by simply matching
the unmatched edges of P, and unmatching the matched edges of P. More formally, the
symmetric difference M & P, the set of edges in exactly one of M and P, is a matching of
size |M| 4 1. The size is as claimed because P has one more unmatched edge than it has
matched edges. The set of edges is a matching because M\ (P N M) is a matching, the set
of unmatched edges in P is a matching, and the endpoints of P are free with respect to M.
Thus M is not a maximum matching.

< Suppose M is a maximum matching, while matching M~ is not (i.e., |M| > |[M~|).
We will show that there is an augmenting path with respect to M~ in G = (V, E) by
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a d g

FiGure XV.39. Example of a Matching
showing that one exists in the subgraph G’ = (V, M & M~). Each vertex in G’ has degree

at most two, since it can be adjacent to at most one of M and M~. So G’ consists of paths
and cycles, with edges alternately from M and M~. Since cycles have an equal number of
edges from each matching, and since |M| > |M~|, there must be a path in G’ that begins
and ends with an edge in M. This is an augmenting path with respect to M~. =

Hence we have the following algorithm to find a maximal matching.

Input: M =10
WHILE there is an augmenting path P with respect to M DO
M+~ MoP

Since |M| < |V|/2, at most n/2 iterations are required in the above algorithm.

2. Finding Augmenting Paths

There remains the problem of finding augmenting paths. The natural way to find one is
to search from a free vertex, advancing only along alternating paths until another free node
is encountered in the path. Unfortunately, using a simple tree search to implement this
approach does not always work for non-bipartite matching. In Figure 2, for instance, we
may start at a free node «a, travel along the path [a, ¢, d, e, f], and “discover” that there is no
augmenting path from a, having seen all nodes reachable from that vertex by an alternating
path. But in fact there is an augmenting path, namely [a, ¢, d, f,e,g]. The problem stems
from the existence of an odd cycle ([d, e, f] in this case), which belongs to a class of odd

cycles called blossoms.

DEFINITION 15. Blossom: a blossom B in a graph G(V, E) with matching M is an odd
cycle with r matched edges and r + 1 unmatched edges (r > 1) that is reachable from some
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a b

9

FiGure XV.40. Cycle [d,e,f] is a blossom

[free vertex by an even-length alternating path.

DEFINITION 16. Base of a blossom: the vertex of the blossom where the lwo unmatched
edges meet (i.e., where the even-length alternating path mentioned in the above definition

meets the blossom).

Edmonds [3] discovered a solution to the difficulty of doing a quick tree search in the
presence of blossoms. His algorithm searches through a graph from its free vertices, and
shrinks each blossom it discovers into a single “condensed” vertex. This is illustrated in
Figure 3. Note that if b is such a condensed vertex, the new graph contains an edge {v, b}

iff v was not in the blossom, but was connected to some vertex that was in the blossom.

DEFINITION 17. Shrunken blossom: a single vertex in the shrunken graph corresponding

to a blossom in the original graph.

We would like to know that shrinking blossoms does not affect our ability to find aug-

menting paths in the original (unshrunken) graph. This is done with the following theorem:

THEOREM 34. 3 an augmenting path a graph G <= 3 an augmenting path in the graph

G’ formed by shrinking some blossom in G.

<= Proof. We consider graph GG’ which differs from G in the respect that a blossom in
G exists in G’ as a shrunken node b. Let P be an augmenting path in G’. If P does not

contain b then P is an augmenting path in G as well. Assume P contains b, and let z be
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Ficure XV.41. Shrinking a blossom.

(a) Blossom defined by path from s to d and cycle [d, €, f, g, h,d].

(b) Shrunken blossom. Augmenting path from s to 7 (resp. j) corresponds to
augmenting path in the original graph going around blossom clockwise (resp.
counterclockwise).

the base of b. If {b, v} is a matched edge in P, v must be adjacent to z, so replace the edge
with the matched edge {z,v}. If {b, v} is an unmatched edge in P, then v must be adjacent
to some node w in the blossom. There is a path P’ in the blossom from z to w, going in
either a clockwise or counter-clockwise direction (or no direction, if w = ). Replace the
unmatched edge {b,v} with the path P’ from z to w, plus the unmatched edge {w, v}.

= We will prove this direction by proving the correctness of Edmonds’ augmenting path

algorithm using blossom shrinking, which is presented below. m

The algorithm consists of an exploration of the graph from its free vertices along alter-
nating paths; blossoms are shrunken as they are encountered. Each vertex is in one of three
states: unreached, odd, or even. (Odd or even vertices are said to be reached.) For each

node v the algorithm maintains p(v), the parent of v in the forest that is created. Initially
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every matched vertex is unreached and every free vertex v is even, with p(v) = null. The
algorithm consists of repeating the EFramine Fdge step below until an augmenting path is

found or there is no unexamined edge {v, w} with v even.

3. Blossom Shrinking Algorithm

Initialize: M < (). Mark free vertices even, other vertices unreached, all edges unexamined.
Examine Edge: Choose an unexamined edge {v, w} with v even, mark it examined, and

apply the appropriate case below:

(a): w is unreached, and thus matched: Mark w odd and mate(w) even; define
p(w) = v and p(mate(w)) = w (i.e., add w and mate(w) to the same tree as v).
(b): w is odd: Do nothing. The parity of w is consistent within the tree.

(c): wis even and v and w are in different trees: Stop; there is an augmenting
path from the root of the tree containing v to the root of the tree containing w.
(d): w is even and v and w are in the same tree: Edge {v,w} closes a
blossom. Let w be the nearest ancestor of v and w. Condense every vertex that
is a descendant of u and an ancestor of v or w into a blossom node b; define
p(b) = p(u) (and p(z) = b for each vertex z that is condensed into b). Mark the
blossom even, and an edge into it unexamined iff one of the corresponding edges

in the previous (unshrunken) graph is unexamined.

Note that we regard a blossom b as containing not only the vertices on the cycle forming
b, but also all vertices belonging to any blssoms on that cycle; that is, containment is

transitive.

THEOREM 35. The blossom-shrinking algorithm succeeds (stops in case (c)) <= There

is an augmenting path in the original graph.

Proof. If the algorithm succeeds, there is an augmenting path in the shrunken graph, since
the algorithm maintains the invariant that all even vertices are at the end of an even-length
alternating path starting at a free vertex. This path can be expanded to an augmenting
path in the original graph by expanding blossoms in the reverse order of their shrinking, in
the manner described in the proof of Theorem 2.

To prove the converse (i.e., to show that if the algorithm doesn’t halt in (c) then the

original graph has an augmenting path), we first make the following observations:

O1: If the algorithm does not terminate in case (c), all even vertices (including
blossoms) that were adjacent at some point during the algorithm are condensed

into the same vertex (blossom) at the end of the algorithm.



98 XV. THE GENERAL MATCHING PROBLEM

O2: If v is a matched vertex, it is reached iff mate(v) is; if they are reached, one is
marked even, the other odd.
03: A blossom contains exactly one vertex with no matched edge in the blossom.

This is true even for nested blossoms.

To verify the observation O1, suppose to the contrary that {v, w} is an edge such that v
and w are both even. Eventually either v and w will be condensed into a common blossom,
or an edge corresponding to {v,w} in the shrunken graph will be examined. Such an
examination causes v and w to be condensed into a common blossom.

Now suppose the algorithm fails but there is an augmenting path p = [zq, 21, ..., Zo41]
in the original graph. We will derive a contradiction in the following manner. Consider
the situation after the algorithm halts. We will show that z; is even (or odd, but shrunken
into an (even) blossom) for all even ¢, 0< ¢ < 2[. Then symmetry states that z; is even
(or shrunken) for all ¢, 0< 7 < 2/ + 1. Observation O1 implies that these vertices must be
condensed into the same blossom by the end of the algorithm, and since both zq and x4,
are free, O3 implies a contradiction.

So, we aim to show that z; is even (or shrunken), for all even . Suppose not; let ¢ be
the least even index such that z; is neither even nor shrunken. Thus ¢ > 0 (¢ is free, and
therefore even) and z;_ is even (or shrunken). The latter implies that z;_; is reached; and
by observation O2, z;_; must be even, since otherwise z; would be even. Thus z;_, and
x;_q are even (or shrunken). Let j be the smallest index such that z;,2;41,...,2;_; are even
(or shrunken). By observation O1 all of these vertices are in the same blossom at the end
of the algorithm. But this blossom has two vertices with no matched edge in the blossom,
namely z; and z;_;. (We know that j is even, since all z4; (0 < k < ¢) are even or shrunken.
So either z; is free, or its mate is not in the blossom. And the mate of z; is not shrunken
(or even), so it is not in the blossom.) This is not possible, by 03, so the algorithm must

halt with success if there is an augmenting path in the original graph. =

This theorem implies the “if” part of the previous one. Let G’ be formed from G by
shrinking a blossom b. Suppose that we run the algorithm in parallel on G and G’'. On G,
we can begin by following the path to and around the blossom and shrinking it. On G’, we
can begin by following the path to b. Now the algorithm is exactly the same on G and G’,
so it succeeds on G iff it succeeds on G’. But it succeeds on each iff there is an augmenting

path in each, so G has an augmenting path iff G’ does.

4. Complexity

The augmenting path method, using blossom-shrinking to find augmenting paths, finds

a maximum matching in polynomial time. There are O(n) augmentations as previously
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mentioned, each of which calls the preceding algorithm. The initialization steps take O(m)
time. We can determine which case applies in the Fzamine Fdge step at a cost of O(1) per
edge by labeling vertices with their respective trees. Cases (a) and (b) take O(1) time per
edge and thus O(m) time total.

Case (c) can happen only once. We have to reconstruct the original augmenting path
when this happens. Clearly any augmenting path can have at most O(n) blossoms, and
it takes O(n?) effort to expand blossoms. To see this, let w and b be adjacent nodes in a
shrunken graph. Both w and b could be condensed blossoms, and expanding them requires
finding an edge that connects two vertices in the blossoms. This is an O(n*) operation.
Therefore case (c) can take O(n?) time. For case (d), identifying the vertices in a blossom
is an O(n) operation. Since each blossom shrinking reduces the number of vertices, case (d)
occurs at most n times, thus taking a total of O(n?) operations. The algorithm for finding
an augmenting path therefore takes O(n®) total time, and a maximum matching can be
found in O(n?) time.

It is not difficult to implement case (c) to run in O(n?) time, giving an O(n?®) algorithm.
With special data structures for set union, this algorithm can be implemented in O(nm).
In addition, there is another algorithm that runs in O(y/nm), thereby matching the best

known algorithm for bipartite matching.
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The Travelling Salesman Problem

Scribe: Amod Agashe

1. NP-Complete Problems

Up to now we have looked at algorithms that run in polynomial time. However, there
are important problems which do not have (or are not known to have) polynomial time
algorithms. Class NP is an important class of problems that can be solved in polynomial
time on a non-deterministic Turing machine. NP-complete problems are the “hardest”
problems in NP and there are no known polynomial-time algorithms to solve them.

Since there are a number of interesting NP-complete problems which occur in practice we
can use one of three ways of dealing with NP-complete problems (and other hard problems

as well):

(1) Exact Algorithms — If a problem has a “fast” average case algorithm, “small”
input size or if we have a “large” computation time available to us, then we can
afford to compute exact solutions by directly applying a non-polynomial algorithm.
This is a technique often used when the problem requires an exact solution, e.g.
some problems in cryptography.

(2) Approximation Algorithms — When a problem does not require an exact solu-
tion we can often use a polynomial time algorithm that will give us an approximate
solution, with some guarantee of how close the approximate solution will be to the
exact solution. For many applications, solutions between 1% to 10% of optimal are
quite acceptable.

(3) Heuristic Algorithms — These are algorithms which give solutions which cannot
be shown to be exact or even approximate (recall that approximate solutions come

with a guarantee of how close they are to the exact solution). However, in practice,
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these algorithms often give solutions very close to the exact solution and are faster

than approximation or exact algorithms.

2. Traveling Salesman Problem : Preliminaries

A very good reference for the Traveling Salesman Problem is [29].

The traveling salesman problem (TSP) is one of the most studied of all NP-complete
problems. It can be motivated by the problem of a traveling salesman who has a number
of clients in different cities and while visiting each of his clients exactly once he wants to
minimize his total traveling distance.

This problem has some practical applications. For example, in certain forms of VLSI
manufacturing one needs to burn some connections on a chip. The cost of this process
is proportional to the time taken by the instrument to move around. We can pose this
as a TSP by modelling the connections as vertices and the cost of movement as a length

function.

DEFINITION 18. A Hamiltontan cycle is a cycle in a graph that contains each node of the

graph exactly once.

DEFINITION 19. The Traveling Salesman Problem is as follows:
Input: a complete graph G = (V, E) and a non-negative length function | on the edges.

Output: a minimum length hamiltonian cycle.

DEFINITION 20. If {(u,v) = (v, u) for all edges in E, then the graph is said to be sym-

metric.

DEerFINITION 21. Ifl(a,c) < £(a,b) + {(a,c) for all edges in E then the triangle inequalily
holds for the graph.

In many applications, we can convert any TSP problem to one in which the triangle
inequality holds by setting the length between two nodes as the length of the shortest path

between the nodes.

DEFINITION 22. Fuclidean TSP: This is a specific case of the general TSP where the
nodes are points in Fuclidean space and the lengths of the edges are the Fuclidean distances.

The Fuclidean TSP problem is symmelric and salisfies the triangle inequality.
DEFINITION 23. A planar TSP is a TSP in R

In this class we will consider the TSP which is symmetric and in which the triangle
inequality holds. Note that all the special cases of the TSP problem (symmetric, asymmetric

etc.) are NP-complete. Then why are we considering special cases at all? The reason is
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Ficure XVI.42. Eulerian cycle.
that the standard reductions of one problem to another apply only to the exact solutions.
We are interested in approximate solutions and heuristics, and here the different cases can
give entirely different results. In this lecture, we will talk about approximation algorithms

and heuristics for the TSP. In the next lecture, we will talk about exact solutions.

3. Approximation Algorithms for the TSP
3.1. Preliminaries.

DEFINITION 24. An algorithm is k-approzimate if its solution has the property that X 4 <
kX* where X* is the length of the optimal tour and X4 is the length of the tour given by

the approzimate solution.

DEFINITION 25. A Fulerian cycle is a cycle that contains edge in the graph exactly once.
(Note: in this lecture, we will be dealing only with connected graphs, hence a Fulerian cycle

also passes through every vertex at least once.) See Figure XVI1.42.
DEFINITION 26. A graph is said to be Fulerian if it contains a Fulerian cycle.

THEOREM 36. G is an Fulerian graph < G is connecled and every node has even degree.

Proof. (=) We are given that G contains an Eulerian cycle. Consider a node v. Starting
at v, go around the Eulerian cycle and eventually ending at v. We can pair up the edges
going in and out of v by matching an edge we used to leave v with an edge we used to return

to v next time. Note that this works because the cycle visits an edge exactly once. Thus v
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Case 1: Sdf loop Case 2: Single edge between
two vertices

Ficure XVI.43. Base case for Theorem 36.
has even degree. We can repeat the argument for any other vertex. Hence all vertices have
even degree.

(<) By Induction on the number of edges. We are given that the graph is connected and
all vertices have even degree.

Base Case: Number of edges = 1. Here we have only two cases as shown in Figure
XVI.43.

In case 1, the graph is connected and every vertex has even degree; and it has an Eulerian
tour. In case 2, all vertices have odd degree and there is no Eulerian cycle. Therefore our
hypothesis is correct for the base case.

Inductive step: Assume the theorem is true for all 7, 1 < ¢ <k — 1.

Cuase 1: Every node has degree 2. Since (G is connected, G must be a cycle, which is the
Eulerian cycle we are looking for.

Case 2: There exists a node of degree greater than two. Then there must be a cycle
through this node (because all node degrees are even). If we remove this cycle from G and
apply the inductive hypothesis to each of the connected components left in the graph, we
get Eulerian cycles in the components. (Note that removing a cycle keeps node degrees
even.)

We can patch these Eulerian cycles together using the removed cycle as follows. Traverse
the removed cycle. The first time you enter a component, say at vertex v, traverse its
Eulerian cycle to come back to v, and continue traversing the removed cycle as shown in
Figure XVI.44.

Since every edge is either on the removed cycle or in one of the connected components,

the resulting cycle contains all the edges in the graph and hence is an Eulerian cycle. =

LEMMA 45. If there is a cycle going through every node and the triangle inequality holds,

then there is a Hamiltontan cycle of no greater length.

Proof. Consider a node v. Suppose it is visited more than once in the given cycle and

suppose that when we visit it the second (or any later) time, the sequence of vertices is
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Ficure XVI.44. Inductive step in Theorem 36

..u,v,w....Then, we can modify the cycle by skipping v, i.e., going directly from u to w as
shown in Figure XVI.45.

Note that due to the triangle inequality, we get a cycle with no greater length. We
can repeat this procedure till all the vertices are visited only once. We end up with a
Hamiltonian cycle of no greater length. Note: we shall henceforth refer to the procedure

we just used as “short-cutting the cycle”. m

3.2. 2-Approximation Tree Algorithm.

(a) Find the minimum spanning tree (MST) 7" under /;;.
(b) Consider the graph G’ = (V,TUT). It is connected and every vertex has even
degree. Therefore, by Lemma 45, it has a Eulerian cycle.

(c) Find an Eulerian cycle in G’ and short-cut it to get a Hamiltonian cycle.
THEOREM 37. Qur tree algorithm is a 2-approzimalion algorithm for Fuclidean TSP.

Proof. Let X* be the length of the optimal tour and X the length of the tour given by the
approximate solution. Let (1) be the length of the MST T of step (a). Then, ¢(7)<X*,
since the shortest tour can be transformed into a tree simply by erasing an edge, and the
shortest spanning tree is at least as short as the result. The length of the Eulerian cycle

of step (c) is 2¢(T"), and by Lemma 45, since short-cutting gives a Hamiltonian cycle of no
greater length, X < 2¢(T). Since [(T) < X*, we have X <2X*. m

Note that we can find a MST in O(m+ nlogn) time by using Fibonacci heaps and there
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Ficure XVI.45. Short-cutting.

exists an algorithm to find a Eulerian cycle in O(m) time. Hence the running time of our

Tree algorithm is O(m + nlogn).

3.3. Christofides’ Algorithm.

(a) Find the MST T.
(b) Find the nodes of T' of odd degree and find the minimum length perfect matching
M in the complete graph consisting of these nodes only. Let G' = (V,T U M).

(c) Find a Eulerian cycle of G’ and short-cut it to get a Hamiltonian cycle.

Remarks:

In part (b): Note that the number of nodes of T of odd degree is even (since the sum of
the degrees of the nodes in 7T is 2n, i.e., even. In this sum, the sum over those nodes which
have even degree is even; hence the sum over nodes with odd degrees is also even. This can
only happen if the latter are even in number). Hence we can find a perfect matching.

In part (c): G’ is connected (since it has a spanning tree) and every node in it has even
degree (since if a node had even degree in 7', it has the same degree in G’. If it has an
odd degree in 7', it has one more edge, coming from the matching M, incident upon it and

hence it has even degree in G'). Hence, by Lemma 45, it has a Eulerian cycle.

THEOREM 38. Christofides’ algorithm is a 1.5-approzimalion algorithm for the Fuclidean
TSP.

Proof. From the discussion above, it is clear that the algorithm finds a tour. Recall
that the graph G’ consists of T" and M; hence the cost of the resulting tour 7 satisfies
1) < UT)+ (M), the length of the Eulerian tour, by Lemma 45. Also, ((T) < £(7%)
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Ficure XVI.46. Two matchings for Theorem 38

where 7* is the shortest tour, as discussed in the previous proof. Also let {i1,is,...,22,} be
the set of odd-degree nodes in 7', in the order that they appear in 7*. In other words, 7* =
[S0,81,51%2...12p,52,] Where sg,51,...,55, are sequences (possibly empty) of nodes from {1, ..., n}
Consider the two matchings of the odd-degree nodes My ={[t1, ©2],[i3, t4],--+s[t2m_1, T2m] } and
Ms= {[ta, 13],[ta, 15],---s[¢2m, 1]} as shown in Figure XVI.46.

By the triangle inequality, ¢(7*) > ¢(M,) + {(M,). However, M is the optimal matching,
so £(1*) > 20(M), i.e., £(M) < 0.5¢(7*). But then, {(7) < 1.5¢(7*), and we have our result.
|

Christofides’ algorithm runs in polynomial time. Step (a) can be done in O(n?) time.

Step (b) can be done in O(n*) time. Step (c) can be carried out in linear time.

4. Heuristic Algorithms

In the following, we will consider the Euclidean TSP.

(1) Tour Construction Heuristics: the idea here is to start with an empty tour and
build it up until it contains all the nodes.
(a) Nearest Neighbor:
- pick an arbitrary vertex w, set tour 7={u}
- for:=1,2,..n— 1 do
: pick a node v in V—7 closest to last node added

: insert node v into tour 7 along with the shortest edge of the previous step

Note: In the following, insert v into tour 7 means :
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- find the edge {7, 7} on 7 which minimizes £(¢,v) 4+ €(v,j) — £(%, 7)
- delete {7, 7} from 7 and add {i,v} and {v,j} to 7.

(b) Nearest Insertion:
- pick an arbitrary vertex u, set tour 7 = {u}.
- if the current partial tour 7 does not include all the vertices, then find those vertices
v, w such that w on the tour and v not on the tour, for which ¢(v,w) is minimum (i.e.,
choose node v that is closest to the set of tour nodes). Insert v into the tour.
(c) Furthest Insertion:
- as above but choose the node v furthest from the tour nodes.
(d) Random Insertion:
- as above but choose the node v randomly.
Generally, FI is better than NN and N/.

(2) Tour Improvement Heuristics :

To be done in the next lecture.
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Branch and Bound Algorithms for TSP

Scribe: Eugene Wong

1. Heuristic Algorithms

1.1. Tour Construction Heuristics. Recall from the last time, in tour construction
heuristics we start with an empty tour and build it until it contains all the nodes. The

following are some examples of this type of heuristics:

1
2
3
4

Nearest Neighbor
Nearest Insertion

(1)
(2)
(3) Further Insertion
(4)

Random Insertion

1.2. Tour Improvement Heuristics. An example of this are the k-optimal procedures.
These procedures pick k edges on the current tour and look at all possible ways of replacing
them with k edges not on the tour. If the best tour obtained in such a way is shorter than
the current one, this best tour replaces the current tour. We stop when the current tour
cannot be improved any more. If &k is a constant, this procedure runs in polynomial time
because each subset of k edges needs to be examined once. The degree of the polynomial
grows with k, however, so only 2-opt and 3-opt procedures are used in practice.

A tour improvement heuristic can start with a random tour. It also can start with a
tour constructed by another heuristic. The possibilities are numerous. For example, we can
construct a tour using random insertion, then apply 2-opt, and then 3-opt. We can repeat

this 20 times and take the best tour found. See [29] for details and experimental data.
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2. Branch And Bound Method

2.1. Integer Programming Formulation of TSP. We can formulate the TSP as an

integer programming problem.

[ 1 ifarc (i,j) is in the tour,
Let i; = { 0 otherwise

Let ¢;; be the cost associate with each arc (¢, j) € E. The formulation is as follows:

(15) max Z Cijij

ijEV
such that
(17) doay=1 VieV
J
(19) day =1 ¥V SCV,S#0.
€S

€5
The constraints say that every node has in and out degrees of one (this forces the set of
selected arcs to form a collection of node-disjoint cycles) and that every nontrivial cut is

crossed by at least one arc (to assure that there is only one cycle).

2.2. Branching. Let I} be a subset of included arcs and Fj, be a subset of excluded arcs
of the k** subproblem. Every solution to the subproblem (I, F) must include all arcs in T
and no arcs from £. We can enumerate all possible assignments of z;;’s as follows.

(1) Pick e € E— (I N Ey).
(2) Branch to the problem I = Iy and Fyo = E U {e}.
(3) Branch to the problem Iy, = I U {e} and Ey, = E.

During this enumeration, we discover all tours and pick the shortest. The enumeration
process can be viewed as searching a tree with nodes labeled by subproblems.

The main idea of the branch and bound method is as follows. Suppose we have a tour of
length U and a lower bound L on the solution value for a subproblem (I, E). If L > U, we
do not have to examine the subtree rooted at the node corresponding to (I, £).

One way to implement branch and bound is as follows.
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Ficure XVIL.47. The reduction of the node-disjoint cycles problem to
the assignment problem.

(1) Initialization
Set U =00, S = (0,0), T = undefined.
(2) Select
If S = 0 stop, otherwise remove (I, ) from S.
(3) Bound
Solve relaxation of (I, £) and let L be the resulting lower bound.
If L > U goto 2.
If L < U and relaxed solution is a tour, update U and 7.
(4) Branch
Add to S pairs ([, Ey), ..., (I, Ex) corresponding to (I, E).

Note that the most time consuming step is the lower bound computation.
A selection rule specifies how the next subproblem is selected from S. Depth-first search

is the most commonly used selection rules.

2.3. Assignment Problem Relaxation. One way to relax TSP is to remove con-
straints (19). This defines the problem of finding a minimum cost collection of node-disjoint
cycles covering all nodes. This problem reduces to the assignment problem by splitting ev-
ery node v into two nodes v’ and v” and replacing every arc (v,w) by an edge {v', w"}.
Figure XVII.47 illustrates this construction. The proof that this reduction works is left as
an exercise.

To use the relaxation in the context of the branch and bound method, we need to be

able to deal with the included and excluded edges in the assignment problem. For most
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algorithms, this is easy to do. In particular, the assignment problem algorithm we studied
uses a reduction to the minimum-cost circulation problem. During the reduction, we can
set upper bounds on capacities of arcs corresponding to the excluded edges to zero and set

lower bounds on capacities of arcs corresponding to the included arcs to one.

2.4. Branching Rules. We discuss two branching rules for branch and bound with the
assignment problem relaxation. See [29] for more.

Consider a solution to the relaxed problem. Let (ay, ..., ax) be a cycle with the smallest
number of arcs in the solution. One possible branching rule is to exclude one of the arcs on

the cycle.
Rule 1: Replace (I, E) by {({,EU{ai}),..., (I, EU {ax})}.

If this rule is used, the search tree may have several nodes corresponding to the same
subproblem. The following rule avoids this problem. The rule includes first ¢ — 1 arcs on
the cycle and excludes the ¢-th arc.

Rule 2: Replace (I, FE) by {({,ENn{ay,... a1}, ENa;) for 1 <t<k}

During a branch and bound computation, it is often possible to use the relaxed solution
obtained at a parent node as a starting point of computing the relaxed solution at the

current node. This may reduce the running time considerably.



LECTURE XVIII

Held-Karp Lower Bound for TSP

Scribe: James McDonald

This lecture was a continuation of the discussion on the Traveling Salesman Problem.
The previous lecture showed how TSP could be solved using branch and bound by relaxing
TSP to the assignment problem. This lecture also considered branch and bound, but relaxed

TSP to a maximization problem of minimum 1-trees.

1. Problem Motivation

Since TSP is NP-complete, the question arises whether instances of TSP can be relaxed
to instances of other problems that are easier to solve, yet whose results are approximately
correct solutions to the original TSP problem. The general tradeoff is that we want to relax
the problem enough so that we can solve it quickly, but as little as possible, to keep the
bound tight.

For unconstrained TSP, we cannot get a good upper bound in polynomial time if P # N P.
In [14], page 147, theorem 6.13 states that upper bounds computed in polynomial time are
arbitrarily bad: “If P # NP, then no polynomial time approximation algorithm A for
the traveling salesman problem can have R} < o00”, where R} is the asymptotic best
guaranteed ratio of the solution given by the approximation algorithm to the one that is
optimal.

However, if we can assume the triangle inequality holds for distances between nodes, then
some approximation techniques are possible. For example, a previous lecture showed how
we can use minimum spanning trees to get a solution less than or equal to twice the optimal
solution, and Christofides’ algorithm improves that ratio to 1.5.

This lecture shows how Held and Karp use 1-trees to place a lower bound on solutions

to a symmetric TSP with the triangle inequality.
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2. Problem Definition

Given a set of nodes and a distance function ¢ relating any two nodes, find a tour of
minimum length, where a tour is defined as a cycle that includes every node. Assume that
the distance function obeys the triangle inequality, i.e., ¢(z,y) + ¢(y, z) > ¢(z, z). Further,
assume the distance function is symmetric, i.e., c(z,y) = c(y, z).

For example, the triangle inequality will be true if we are considering nodes given coor-

dinates in a Euclidean space, and we use the normal Euclidean distance function.

3. Equivalence of TSP to an Integer Linear Program

TSP and IP (integer programming) are each NP-complete (hence can be reduced to each

other), so as in the previous lecture, we recast TSP as an integer programming problem:

(1) min3=cy ev Ciji ¢;; represents the cost of an arc

given the constraints:

(2) @i; €{0,1} Vi,jev
(3) djev Tij = 2 VieV Every node has degree 2.
(4) Yiesjes Tij > 2 SCV,5#0 The graph is two-connected.

This last condition (connectivity) is equivalent to

(5) Yiesjes iy <2(|S|-1) SCV, 540 No subtours.

4. Branch and Bound

As explained in the previous lecture, a branch and bound procedure for a discrete opti-
mization problem (e.g. TSP) works by breaking the feasible set of solutions into successively
smaller subsets, calculating bounds on the value of an objective function over each subset,
and using those bounds to eliminate subsets.

In [29], Balas and Toth list four essential ingredients for any branch and bound proce-
dure for a discrete optimization problem P of the form min{f(z)|z € T}, where the first

requirement is by far the most important:

(1) A relaxation problem R for P, of the form min{f(z)|z € S}, such that S C 7.

(2) A branching rule that partitions a feasible subset S; into smaller subsets.

(3) A lower bounding procedure that bounds from below the optimal solutions to each
R; that is the relaxation of P restricted to .5;.

(4) A selection rule for choosing the next subproblem to be processed (e.g. depth first

search).
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5. Relaxation of TSP to Lagrangian dual

5.1. 1-Trees. Given a distinguished node ¢t € V, a I-lree (also called a unicycle) is a
spanning tree of V' — {t} plus a pair of arcs connecting ¢ to the tree. We define the cost of
a l-tree to be the sum of costs of its edges. A minimum 1-tree is a 1-tree of the minimum
weight. Note that if a minimum 1-tree is a tour, it is an optimal solution to TSP, although
the converse is not true. Without loss of generality, we assume from now on that the special
node ¢t is node 1.

A minimum 1-tree can be computed as follows.

ALGORITHM 2. Finding minimum 1-tree.

(1) Find an MST of G — {1}.
(2) Add the two cheapest edges connecting node 1 to that MST.

The result is a minimum 1-tree (with respect to node 1) containing an MST with node
1 at a leaf. It is obvious that this algorithm is correct. The running time of the algorithm
is dominated by the first step, which takes O(m + nlogn) time.

However, the cost of such a 1-tree is not a particularly good lower bound for TSP. In
[29], Balas and Toth report that on a set of 140 problems with 40 < n < 100 the costs of

minimum 1-trees were only about 63% of the values for optimal TSP solutions.

5.2. Penalty Function to Introduce Bias Towards Tours. We can improve this
lower bound by noticing that if we introduce a cost for each node to be added to each
adjacent edge, we do not alter the ranking of tours (they all change by twice the total
cost added for all nodes), but the ranking of 1-trees may change. In particular, if a larger
penalty is added for nodes of high degree, the search for minimal 1-trees will be biased
towards tours.

With this in mind, we revise the constraints given above as follows:

(1) min3 ey jev Cijeij
(2) z;; € {0,1} Vi,jeV
(3) Yiesjes Tij > 1 SCV,S#0 Connectivity.
This is a relaxation of the requirement for two-connectivity.
(4) YievjevTij =2%n The average degree is 2.
This is a relaxation of the previous constraints on degrees (3, z;; = 2)
(5) Yjevar; =2 The degree of the distinguished node 1 is 2.

Given these constraints, we could have nodes with degree 1 and other nodes with degree
exceeding 2. Call the latter bad nodes, and introduce a penalty function A and a reduced

cost function ¢:
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AV R
Cij = Cij + A + A

Note that minimizing ) ¢;; is equivalent to minimizing > ¢;;zi; + 2 ;cp i

LEMMA 46. If C* is a minimum weight tour with respect to ¢;;, then C* is a minimum

weight tour with respect lo c;;.

Proof. The proof is obvious, as indicated above: since every node is accounted for twice in
every tour, once in the edge entering it and one in the edge leaving it, the weight of every

tour is increased by the same amount. m

However, even though the rank of a tour is not changed, the rank of a 1-tree can change,

since nodes are not all of degree 2. Consider the example in Figure XVIII.48.

+1 -1

Ficure XVIIL.48. Penalty function affects weight of a 1-Tree.

6. Revision of Relaxed Problem on 1-Trees to Use Penalties

Now we revise the problem so that we are looking for a penalty function A that produces
the maximal weights for minimal 1-trees. This should yield an improved lower bound.

Let L(A) be the weight of minimum 1-tree using ¢ cost function induced by A.

Let L = maxz, L(\)

L is called the Lagrangian dual of TSP, and gives a much tighter lower bound than the
simple 1-tree problem with the TSP cost function, but it is harder to compute. The fastest
known algorithm for the problem, due to Vaidya [45], uses interior-point techniques and runs
in O(n*M (n)logn) time, where M(n) is the time needed to multiply two n X n matrices.
This problem can be also solved using the ellipsoid method and using a generalization of

the approximate multicommodity flow algorithm discussed earlier to packing and covering
problems [36].

6.1. Subgradient Optimization. In [31], Held and Karp considered several methods
to maximize L, including a straightforward ascent method, which started the area of sub-
gradient optimization.

Let d(n) be the degree of n in a minimum 1-tree. We want to make nodes with d(v) > 2
more expensive, and the node with d(v) < 1 less expensive. At each iteration, update X as
follows:

NHL € ok (dF - 2)
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where d¥ are determined by the maximum 1-tree found using A*.

In [29], Balas and Toth define o* as %. If o is small enough, this procedure
will converge to an optimal value for A. In practice, o is often set to a constant, and an
the algorithm is stopped when the improvement at each step becomes small. The resulting
solution is usually a very good approximation to the minimum 1-tree.

In [29], Balas and Toth also define a subgradient of a convex function f(z) at z = a* as
a vector s such that f(z) — f(z*) > s(z — 2*) for all z. The n-vector whose components

are df — 2 is a subgradient of L(\) at A*, hence the name subgradient optimization.

6.2. Held-Karp lower bound is not strict. The lower bound achieved by the Held-
Karp method is not arbitrarily close to the optimal TSP solution, as Figure XVIII.49

illustrates:
1
2
2 1 2
2 ez N2
1
Optima TSP solution is 10
1 1
2
2
2 1 1 2
2 2
1 1
A --sizeis9 B --sizeis9

Ficure XVIII.49. Held-Karp lower bound is sometimes suboptimal.

The solution to TSP is 10, which can be found by enumeration, but the Held-Karp lower
bound is 9, as seen in the two 1-trees A and B. The problem here is that some nodes are of
degree 1 in A iff they are of degree 3 in B, and vice versa. This can be used to show that
in the Held-Karp lower bound for this problem is 2.

This example does not specify the distinguished node. To fix this problem, we introduce
a node in the middle of the central edge of the example, and set the length for the two new

edges to 0.5. The distinguished node is the new node, which has degree 2 in both trees.

6.3. A Branching Rule. Many branch-and-bound rules can be used with the Held-
Karp lower bound. For example, we can choose an edge {i,7} in a 1-tree found by the
lower bound procedure, such that {7,j} ¢ I and A; + A; is maximized. Then branch on the

inclusion /exclusion of {i,j}:

(BEU{{s,j3} 1) (B, TU{{i,j}}).
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Note that for the current 1-tree is an optimal solution to the second subproblem (but this

subproblem has a bigger set of included edges).

7. Misc

Shmoys and Williamson [40] show that the Christofides approximation is actually less
than or equal to 1.5 times the Held-Karp lower bound, as depicted in Figure XVIII.50.

optimal solution

l
T |

Held/Karp lower bound Christofides upper bound

1.5* Held/Karp lower bound

Ficure XVIIIL.50. Christofides upper bound = 1.5 x Held-Karp lower bound



LECTURE XIX

Interior Point Method for Linear Programming

Scribe: Wagar Hasan

1. Overview

The Simplex Method is not known to run in polynomial-time. The first polynomial-time
algorithm for LP was published by the Soviet mathematician, L.G. Khachian [26]. While
an important theoretical contribution, Kachian’s ellipsoid algorithm is not very practical.

Karmarkar [24] introduced a practical polynomial method for solving LP. We shall study
Gonzaga’s [21] affine scaling algorithm. Both Karmarkar’s algorithm and Gonzaga’s algo-
rithm are interior point methods. Gonzaga’s algorithm directly minimizes the potential
function that was used by Karmarkar in the analysis of his algorithm.

Whether there exists a strongly polynomial algorithm for solving LP is still an open
question.

The Linear Programming Problem.: The Linear Programming problem may be stated

as:
st
mincax
st. Az = b
x > 0
where

Ais a m X n matrix,
x, ¢ are vectors of length n,

b is a vector of length m.
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k:=0
repeat
scaling:
A:=AD"' ¢:=eD™' y:= Dz
fly) = qlo (c'y) = 2 iz log(ui)
projection
h = P(=V{(e))
step
y* = e+ Ah,where A = ﬁ
goback
T gktl.— p-t
k=k+1

until z* < & ~27L where L is length of input.
Ficure XIX.51. The Affine Scaling Algorithm.
2. Gonzaga’s Algorithm

We shall make the following assumptions. These assumptions are quite technical, and
their main purpose is to simplify the presentation. We will justify some of these assumptions

later.

1
2

(1) The input problem is bounded.

(2) A has full rank.

(3) The optimal value of the objective function is 0.
(4) An initial interior point, 2°, is available.

(5)

5) f(z°) = O(L), where L is the bit length of the input and f is the potential function

defined below.

We note that the second assumption implies that (Zzt)_lexists. We begin by looking

at a potential function, f, given by

fly) = qlog(Zy) Zlog (vi)-

where ¢ = n + /n is a weighting factor. We note that the first term goes to —oo as
¢y — 0, while the second terms inflicts an increasing penalty as we move towards the

boundary formed by the nonnegativity constraints. We compute the gradient of f to be

q_, 1 1.,
Vily) = =—¢ — (—,...,—)".
( ) cy (yl yn)
Upon evaluating the gradient at the point e = (1,...,1)" we have
Vi) = %Eﬁ —é
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The algorithm generates a sequence of points {z*} such that f(z*) — 0. On the k-th
iteration let
D = diag(r, ..., Z) be the diagonal matrix (see Figure XIX.52).

P=1- AtEAAt)_l:Lél, with A as given below.

We note that for any vector &, Pz is in N(A), the null space of A, since APz = Az —
AAYAAYTAe = Az — Az = 0. Also we have that P(Py) = (I — A"(AA")~PA(T —
AYAAY T Ay = y—2AY(AAY) T Ay+ AT (AAY)TTAAY(AAY T Ay = y—AY(AAY) T Ay = Py.
Also, if z € N(A), we have Pz = . P is known as the projection matrix onto the null-space
of A.

The algorithm is described in Figure XIX.51.

We will now discuss the steps of the algorithm in more detail.

e The scaling accomplishes an affine transformation of the problem such that the point
z* is mapped into the point e in the new coordinate system by the mapping y +—

Dz, thus centering the current interior point. The idea is that the interior point may

have been very near the boundary formed by the nonnegativity constraints, but is

now centered and a larger step is possible in the new coordinates. The equation on
the second line of the scaling step expresses the function f in these new coordinates.

e The projection step of the algorithm projects onto the null space of A the vector
—V f(e), which, being the negative of the gradient in the new coordinates, is the
direction of maximum decrease of the potential function. This is done to ensure
that the next step provides us with a valid update.

e The step step produces the vector y* by adding a multiple of the projected vector
from the previous step. Since the vector which is added is in the null space of A,
we are assured that Ay* = Ae = b. So far, we have transformed the problem into
new coordinates, and moved in the direction of the projected direction of greatest
decrease.

e In goback, we transform the variables back to the original coordinate system.
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The algorithm improves the potential function, f, in the transformed space rather than
in the original coordinates. It turns out that the improvement in the potential function is
actually preserved. In other words a decrease of say 105 in one space is a decrease of 105

in the other. To see this, we observe that, for a given iteration,

fly) = qlog(c'y) — Zlog vi)
= qlog(c'z) — Zlogdw

= qlog(c'z) Zlog )+ ilog(d
n=1

= f(a )—I—constant.

We denote the first term of f(y) as fi(y) and the second as fy(y). That is, we have
fily) = qlog(Ty), foly) = Xiz;log(ys)-

We will now obtain an approximation of the potential function. Using Taylor’s theorem

we have

52

where 6 is between 0 and §, allowing the possibility that § is negative. So we have

52

o+ 2 0 S e

and hence
log(1+44) > § — 267

if 118> 1
We will now derive bounds for the terms of the new potential function.
Since f,(y) = qlog(c'y) is a concave function, a linear approximation provides an over-

estimation. This implies

file+AR) < fi(e) + /\Vfl(e)th

Using the previous result, for an n-vector h, and a number A such that 1 — |Ah;| > % for

each component of Ak, we have
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fole+ AR) = anlog(l—}—/\hi)

i=1
> > A —2) " AR
i=1 i=1
= fole) + AV fo(e) h — 227 A].

where ||| = /hi + ...+ h2 and we have used the facts that fo(e) = 0 and Vfa(e) = e.
Combining, the bounds on f; and f,, we get

Jle+Ah) < f(e) + AV f(e) h+ 2271,



LECTURE XX

Analysis of Gonzaga’s Algorithm

Scribe: David Karger

Recall the last thing we proved last time. We had chosen to change our candidate solution
by the quantity h = —PV f(e). In other words, we found the direction of the maximum
decrease of the potential function f, selected a vector which in that direction, and then
projected that vector into the null-space of A (using the projection matrix P) so that
moving along the projection would not cause us to violate the constraint matrix. We then

proceeded to prove that
(20) fe+Ah) = f(e) < AV () b+ 2X%||h|*.

This required on the assumption that Ah; < 1/2 for every . Since h has been constructed
to point in the opposite direction from V f(e), we expect the first term on the right to be
rather negative. On the other hand the second term, which has a A? coefficient as opposed
to the A coeflicient in the first term, should be too small to cancel out the negativity of the
first term. This should let us claim that the potential decreases by a significant amount.

We proceed to do this.

LEMMA 47. ||h]| > 1.

Proof. Let § be an optimal solution, so that ¢’y = 0. Recall that § — e € null-space of A,
since Ay = Ae =b. Thus P'(§—e€) = (§ — ¢)
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K- = —(PVI()(G-¢)
= (V)P -e)
= ~(VI() G- e)
= (—cte)f(i—e)
= UG cte ety 4 1

= Vn+€y,

where we have used the facts that ¢!y = 0 and ¢ = /n + n.

ey=> "y > > v
i=1 i=1

WG =€) > Vn+ I3l

Now, since y; > 0, we have

and thus

and an application of the Cauchy-Shwartz inequality implies

B0 = ell = v/n+ 13
which implies
1AL (IZH -+ [lell) = v+ [13l]
and on dividing both sides by v/n + [|j|| we arrive at
IRl > 1.

This lets us show an improvement in the value of f. Recall that we want to drive f down

towards —oo. The following result gives an idea of how fast this happens:

LEMMA 48. [(y*) = f(e) = f(e+Ah) = f(e) < —0.12 for A = 5.

Proof. Clearly we have max; |Ah;| < 0.5 so that (1) applies. i.e.,

Jy™) = fle) < MV (e)'h+2X°|h|".

Consider the first right-hand term:
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(VIEe)'h = —=(Vf(e)'Vie)

The third equality follows from the easily verified result that P(I — P) = 0, where I and
0 are the identity and zero matrix respectively.

So we have

Fly) = fle) < =AllR)*(1 = 22)
< AR = 24)
6
= —AHhH(l—m)
~0.3
= WHhH(l—O-G)
= -0.12

where we have used the fact that ||k]| > 1 to obtain the second inequality. m

We now assume that the problem is bounded, the feasible region is bounded and that
f(z(®) = O(L), where L is the length of the input.

LEMMA 49. The number of ilerations needed to gel within distance € of an optimum
vertez is O(nL) if e = 27L,

Proof. Let k denote the number of iterations performed until the stopping criterion is met,
and let (") denote the value of z at the i** iteration. We have 37, log xgk) < M for some
constant M, due to the boundedness of the feasible region. Let o = 0.12. Then by the

previous analysis of the decrease in f,

(21) f@%)) < f(29) —ka=0O(L) - ka

and by definition of f and based on the stopping rule,

(22) Fz®)) = qlogea®) — Zlog eM > —qL - L.
Putting these last two statements together results in

(23) ka < O(L)+qL
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and hence, recalling the definition of q,

%—}- gk =O0(nl)

8%

(24) k<

Once the objective value is less than ¢, we will apply a procedure which finds a vertex
where the objective function value is at least as good as that of the current solution. If €
is small enough, this vertex is optimal because the limited precision of the input numbers
prevents a non-optimal vertex from having a value this close to optimal.

This motivates the following problem. Given a feasible point , find a vertex v such that
¢(v) < ¢(z). This can be done as follows. Consider the direction e, = (0,...,0,1). Set ¢ to
be +e, or —e, so that if we move from z along ¢, the objective function is nondecreasing
(the objective function, being linear, cannot decrease in both of these directions). Move
along ¢ until you hit the first constraint and obtain a feasible point with objective value at
most ¢(z). Project the problem in the constraint to obtain a smaller-dimensional problem

and continue.

LEMMA 50. Assume all input numbers are B-bil inlegers. If ¢ = 27"L then if T is a

vertex with ¢ < ¢ — ¢z = 0.

Proof. For the vertex T we have that A7 = b. Hence there is a invertible submatrix A" of
A and a subvector b of b such that A'z" = b By Cramer’s rule, a non-zero component is
given by a ratio, the numerator of which is an element of ', and hence is integer, and whose
denominator is a properly chosen determinant. We note that the size of this determinant
is at most n"(2%)". Suppose ¢Z > 0. Since the common denominator of the components

of € is at most n" 278 < 22nL for p large enough, and the lemma flows. m

By a more careful analysis, it can be shown that it is enough to set ¢ = 2%,

In the general case that the minimum of the objective function is not 0, we replace the
original problem with the problem of minimizing the gap between the primal objective func-
tion and the dual objective function, with constraints given by combining the constraints of
the primal and dual. If a solution exists, duality theory assures us that the optimal solution
of the constructed problem corresponds to the optimal solution of the original problem.

To obtain the initial basic feasible vector we may apply the algorithm to the Phase 1
version of the problem as is typically done in the simplex method when seeking a basic

feasible vector.
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