
Chapter 10

Lower Bounds

When solving TSPs in practice, the main interest, of course, lies in computing good
feasible tours. But, in addition, one would like to have some guarantee on the quality of
the solutions found. Such guarantees can, except for weak a-priori guarantees for some
heuristics, only be given if a lower bound for the length of a shortest possible tour is
known.
In general, lower bounds are obtained by solving relaxations of the original problem
in the sense that one optimizes over some set containing all feasible solutions of the
original problem as a (proper) subset. Then (for a minimization problem) the optimal
solution of the relaxed problem gives a valid lower bound for the value of the optimal
solution of the original problem. Different relaxations provide different lower bounds.
The main goal is to find relaxation problems for the TSP that can be solved efficiently
and which are as tight as possible under this constraint.
For the purposes of this study, we are mainly interested in lower bounds which can
be computed fast enough to only slightly increase the overall computation effort and
running time. These lower bounds are not meant to give a very good estimate of the
achievable optimum (say within a few percent) but to give indications on the quality
of tours found by fast heuristics. This is usually sufficient for practitioners to get an
impression of the performance of a heuristic on a particular problem.
But, to really evaluate a heuristic one should spend more time for computing better
lower bounds. We will also address this question and indicate how CPU time can be
saved.

10.1 Bounds from Linear Programming

Employing linear programming to determine lower bounds for the traveling salesman
problem is not a major topic of this monograph. We will return to approaches for solving
the TSP to optimality using linear programming bounds in Chapter 12. For the purposes
of this chapter we need the theoretical framework provided by linear programming. The
(combinatorial) bounds to be discussed in the following section can be compared with
respect to related linear programming relaxations.
Consider the traveling salesman polytope PT = conv{χF ∈ {0, 1}(

n
2) | χF is the

incidence vector of tour F in Kn = (Vn, En)}, i.e., the convex hull of the incidence
vectors of all tours in the complete graph. For a given vector c of edge lengths the
optimal solution of the corresponding traveling salesman problem instance is obtained
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by solving the linear programming problem min{cTx | x ∈ PT}. The question of solving
this problem will be addressed in Chapter 12.
Now let P be a polytope (or polyhedron) such that PT ⊆ P . A solution of the problem
min{cTx | x ∈ P} yields a lower bound on the minimal tour length. Depending on how
well P approximates PT this lower bound may come close to the optimal tour length.
Two relaxations are of particular interest for the following.

10.1.1 The 2-Matching Relaxation

A perfect 2-matching in a graph G = (V,E) is a set of edges such that every node of
V is incident to exactly two of these edges. Every tour is therefore a perfect 2-matching,
but since also a collection of subtours is a perfect 2-matching we only have a relaxation.
The following is an integer linear programming formulation of the 2-matching problem.

min
∑

ij∈En

cijxij

x(δ(i)) = 2, for all i ∈ Vn,

xij ∈ {0, 1}, for all ij ∈ En.

This problem can be solved in polynomial time (Edmonds & Johnson (1973)). Im-
plementation of this algorithm is nontrivial, its worst case running time is O(n3). An
efficient implementation is discussed in Pekny & Miller (1994).
If we replace the requirement “xij ∈ {0, 1}” by “0 ≤ xij ≤ 1” we obtain the fractional
2-matching relaxation of the traveling salesman problem.

10.1.2 The Subtour Elimination Relaxation

In the 2-matching problem only the degree constraints are taken into account. Short
cycles are not forbidden. If we include conditions to eliminate such subtours we obtain
the following integer linear program.

min
∑

ij∈En

cijxij

n∑

j=1

xij = 2, for all i ∈ Vn,

x(E(S)) ≤ |S| − 1, for all S ⊆ Vn, 2 ≤ |S| ≤ �n
2
	,

xij ∈ {0, 1}, for all ij ∈ En.

Note that this formulation is equivalent to the one given in section 2.3. Feasible solutions
of this problem are exactly the incidence vectors of tours. Therefore solving this problem
is NP-hard. Relaxing the integrality stipulations and observing that the constraints
for the 2-element sets S yield upper bounds for the variables we obtain the subtour
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elimination relaxation of the TSP.

min
∑

ij∈En

cijxij

n∑

j=1

xij = 2, for all i ∈ Vn,

x(E(S)) ≤ |S| − 1, for all S ⊆ Vn, 2 ≤ |S| ≤ �n
2
	,

xij ≥ 0, for all ij ∈ En.

An equivalent formulation of this linear programming problem (Grötschel & Pad-

berg (1985)) is the following.

min
∑

ij∈En

cijxij

n∑

j=1

xij = 2, for all i ∈ Vn,

x(δ(W )) ≥ 2, for all W ⊆ Vn, 2 ≤ |W | ≤ �n
2
	,

xij ≥ 0, for all ij ∈ En.

Here subtour elimination constraints are given in their cut version. This corresponds to
requiring that every (nonempty) cut in Kn contains at least two tour edges.
The subtour elimination bound can be determined in polynomial time using the ellipsoid
method (Grötschel, Lovász & Schrijver (1988)) based on a polynomial time sepa-
ration algorithm for subtour elimination constraints (Padberg & Grötschel (1985)).
So far, no “nice” algorithm, i.e., an algorithm which does not explicitly need an LP solver
as subroutine, for solving this problem in polynomial time is known. Some interesting
properties of this relaxation are studied in Boyd & Pulleyblank (1990).

10.2 Simple Lower Bounds

We start the discussion of lower bounds for the TSP by considering several fairly simple
bounds. These bounds are “combinatorial” in the sense that they are derived directly
as obvious relaxations of the definition of tours.

10.2.1 The 1-Tree Bound

The 1-tree bound for the TSP is based on the following observation. If we select some
node of the problem, say node 1, then a Hamiltonian tour consists of a special spanning
tree (namely a path) on the remaining n − 1 nodes plus two edges connecting node 1
to this spanning tree. Hence we obtain a relaxation of the TSP if we take as feasible
solutions arbitrary spanning trees on the node set Vn \ {1} plus two additional edges
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incident to node 1. Of course, in the case of nonnegative edge lengths, the weight of the
minimum spanning tree alone also provides a (weaker) lower bound.
Figure 10.1 displays a 1-tree for problem pcb442. In this 1-tree the special node is the
node in the lower right corner. The corresponding lower bound is 46858. Recall that a
shortest possible tour has length 50778.

Figure 10.1 A 1-tree lower bound for pcb442

We use the following procedure to determine a 1-tree lower bound.

procedure simple 1tree

(1) Compute a minimum weight spanning tree T and let c(T ) be its weight.

(2) For every node i which is a leaf of this spanning tree compute the distance d2(i)
to its second nearest neighbor (an edge to the nearest neighbor is already in T ).
This gives the lower bound c(T ) + d2(i) on the minimal tour length.

(3) Take the best of the bounds computed in Step (2).

end of simple 1tree

Note, that we do not compute the best obtainable 1-tree. We just consider those nodes
as special nodes which have degree 1 in the minimum spanning tree, and we take the
best of these lower bounds. To compute the best 1-tree we have to compute n minimum
spanning trees which is too time consuming.
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In general, computing a minimum spanning tree in a complete graph on n nodes takes
time O(n2), and finding the additional edge takes time O(n) for every leaf. If we are
not interested in computing several 1-trees we can compute a minimum spanning tree
on the nodes 2, 3, . . . , n in time O(n2) and add the two shortest edges incident to node 1
in time O(n).
For geometric problems, we can do better by exploiting the Delaunay graph. Recall
that the Delaunay graph is planar and therefore has O(n) edges. Since the Delaunay
graph contains a minimum spanning tree (for the complete graph) this spanning tree
can be computed in the Delaunay graph in time O(n logn) using Kruskal’s algorithm.
Computing the various 1-trees for the leaves can be done with little additional time.
For every node i we only have to compute the distances to nodes that are connected to
i in the Delaunay graph by a path of length at most two. In the usual case these are
only very few nodes.
The 1-tree computation constitutes a relaxation of the problem of finding a shortest
Hamiltonian tour since we do not require every node to have degree 2. If a minimum
1-tree computed as above happens to satisfy this degree constraint, then it is an optimal
tour. Unfortunately, this can never be expected for practical problems.
For other metrics we can employ the respective Delaunay graphs to speed up compu-
tations as well. With the help of the Delaunay graph we can determine the possible
best 1-tree in time O(n2 log n). Computing this 1-tree, however, turned out not to be
worthwhile, because it only slightly (if at all) improves our simple 1-tree bound.
Frieze (1979) describes a tour construction heuristic based on 1-trees, that yields tours
at most 2− (k/n) times longer than an optimal tour in time O(n3+k) for 1 ≤ k ≤ n−2.
The 1-tree bound can be adapted in a fairly natural way to the asymmetric traveling
salesman problem. For the ATSP, so-called spanning 1-arborescences are relaxations
of directed Hamiltonian cycles. A 1-arborescence is an arc set with the property that
every node has indegree at most 1 and a special node has indegree and outdegree
equal to 1. The determination of minimum weight spanning 1-arborescences is more
complicated than the determination of minimum spanning 1-trees, but can still be done
very efficiently (Fischetti & Toth (1993).

10.2.2 The 2-Neighbor Bound

In a tour, each node is connected to exactly two other nodes. If we have a tour in which
each node is connected to its two nearest neighbors then this tour must be optimal.
Of course, this can only be achieved in very rare cases. In general, this observation
leads to the derivation of a further simple lower bound. If we compute for all nodes
the distances to their two nearest neighbors, sum up all these distances and divide by 2
then this number (rounded up) gives a lower bound on the minimal tour length. We
call the subgraph of the complete graph which is obtained by taking for each node the
two edges to its two nearest neighbors a 2-neighbor configuration. In this case we
keep multiple edges, so that such a configuration consists of 2n edges.
Figure 10.2 visualizes the 2-neighbor lower bound for problem pcb442. It provides the
lower bound 47304.
The 2-neighbor bound can be computed trivially in time O(n2). For geometric instances
we can do better by exploiting the Delaunay graph. Having computed the Delaunay
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graph in time O(n logn) we only have to compute for every node the distances to those
nodes that are connected to it by a path of length at most two. The two nearest
neighbors are among these nodes.

Figure 10.2 The 2-neighbor bound for pcb442

The quality of the bounds is, of course, highly problem dependent. The 2-neighbor
configurations can give very poor bounds if there are clusters of points. Some such
examples can be found in the computational results (e.g., d198, p654, u1060 or rl5934).
A large gap between 1-tree and 2-neighbor bound might indicate that the problem is
well suited for decomposition algorithms (described in Chapter 8) and also that the
nearest neighbor candidate set is not sufficient for finding good tours.

10.2.3 The Assignment Relaxation

Another example of an relaxation that is often discussed in the context of TSP relax-
ations is the assignment relaxation. It is usually employed for asymmetric problem
instances, but can also be formulated for the undirected problem.
An assignment for Vn = {1, 2, . . . , n} is a collection S of ordered pairs of the form
S = {(i, ni) | i = 1, 2 . . . , n} such that every node occurs exactly once as the second
component of a pair.
A tour gives a particular assignment as follows: we choose one of the two possible
orientations of the tour and assign to every node its successor in the tour according to
the chosen orientation. Such assignments have the additional property that for every
pair (i, ni) we have i �= ni. The cost of the assignment is exactly the length of the tour.
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Conversely, we can associate with every assignment the undirected graph given by the
edges {i, ni}, i = 1, 2, . . . , n. This graph can have loops or multiple edges. If we restrict
ourselves to assignments not containing pairs (i, ni) with i = ni then the associated
graph consists only of multiple edges and cycles.
Therefore, the assigment problem constitutes a relaxation of the TSP. It can be solved
in time O(n3) with several algorithmic approaches, e.g. with the Hungarian method
(see Carpaneto & Toth (1983) for an efficient implementation).
If we do not allow loops, then the following is an integer linear programming formulation
of the assignment relaxation for the TSP.

min
∑

ij∈En

cijxij

x(δ(i)) = 2, for all i ∈ Vn,

xij ∈ {0, 1, 2}, for all ij ∈ En.

The similarity to the 2-matching relaxation 10.1.1 is immediately seen. The important
difference is that edge variables are allowed to have values greater than 1. Therefore,
this relaxation is weaker than the 2-matching relaxation.

Figure 10.3 The assignment lower bound for pcb442

Figure 10.3 show the assignment lower bound for problem pcb442 with value 46830.
The optimal assignment does not even come close to a tour. It contains many multiple
edges and only short cycles.
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10.2.4 Geometric Bounds

The idea of the geometric lower bound described in the sequel originates from techniques
applied to the Euclidean matching problem (Jünger & Pulleyblank (1993)).
The geometric structure of Euclidean TSPs yields a very simple illustrative lower bound
for the TSP. We compute a system of circles around nodes and moats around sets of
circles and moats. This is done in such a way that circles and moats do not overlap
each other. Moreover, there has to be always at least one node inside and outside of
each circle and moat.
Each node has to be contained in a tour and every moat has to be crossed at least two
times (since there are nodes inside and outside of each moat). Hence twice the sum of
the radii of all circles and the width of all moats gives a lower bound on the minimal
tour length.
Figure 10.4 gives an illustration of such a system consisting of 7 circles and 5 moats.

Figure 10.4 A system of circles and moats

Different systems of circles and moats are possible for a collection of points. One such
geometric lower bound can be computed by extending Kruskal’s algorithm with little
additional computational effort. We give the procedure below.

procedure geometric bound

(1) For the sake of simplicity we shall always speak about moats in the sequel (circles
are just moats around a single node). Whenever a tree edge is selected during
Kruskal’s algorithm, it connects two components to form a new component. At
this point a weight w will be assigned to the new component. This weight depends
on the connecting edge and on the weights of the two participating components.
Initially all components are just single nodes and their respective weights are 0.
The lower bound lb is also set to 0.
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(2) Let e be a tree edge with length ce selected by Kruskal’s algorithm. Let C1 and
C2 be the two components to be connected to form the new component C. We
set lb := lb+ 2 · (ce − wC1 − wC2) and wC := ce/2, where wC , wC1 , and wC2 are
the weights associated with the respective components.
(Note that the weights are not the moat widths. The widths of the moats around
the components C1 and C2 used here implicitly are 1

2ce − wC1 and 1
2ce − wC2 .)

(3) The value lb computed above gives a geometric lower bound based on circles and
moats.

end of geometric bound

The geometric lower bound as defined above can be obtained with (practically) no
additional running time when implemented as in this procedure. Looking more closely
at the way how this particular lower bound is computed, one realizes that it is exactly
the sum of the length of a minimum spanning tree and the length of the final edge added
by Kruskal’s algorithm, i.e., the longest edge of the minimum spanning tree. Therefore,
this specific computation is not restricted to geometric instances only. It applies to
arbitrary TSPs.
The geometric bound seems to be rather weak. But we shall see below that the weak
bounds obtained are only due to our simple scheme for determining the radii of the
circles and the widths of the moats.
If we denote by zi the radius of the circle around node i and by yS the width of the
moat around set S, 2 ≤ |S| ≤ n− 1, then the problem of finding the best bound can be
formulated as a linear programming problem as follows.

max 2
n∑

i=1

zi + 2
∑

S

yS

zi + zj +
∑

S
i∈S,j /∈S

yS ≤ cij , for all ij ∈ En,(CM)

zi ≥ 0, for all i ∈ Vn,

yS ≥ 0, for all 2 ≤ |S| ≤ n− 1.

Dualizing this linear program we obtain

min
∑

ij∈En

cijxij

n∑

j=1

xij ≥ 2, for all i ∈ Vn,(CMD)

∑

S
i∈S,j /∈S

xij ≥ 2, for all 2 ≤ |S| ≤ n− 1,

xij ≥ 0, for all ij ∈ En.

Note that the first group of inequalities corresponds to a set S of cardinality 1 in the
second system.
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It is known that every vertex x∗ of the polytope defining (CMD) is given as the unique
solution of a system of

(
n
2

)
equations of the form

xij = 0, for all ij ∈ F,
∑

i∈S,j /∈S

xij = 2, for all S ∈ B ⊆ 2Vn , |S| ≥ 1,

where B is a nested family, i.e., for every Si, Sj ∈ B we have either Si ⊂ Sj , Sj ⊂ Si, or
Si ∩ Sj = ∅, and where F ⊆ En, |F | =

(
n
2

)
− |B| (Cornuejols, Fonlupt & Naddef

(1985), Boyd & Pulleyblank (1990)). Due to this condition we obtain |B| ≤ 2n− 1.
In our application we have cij > 0 for all ij ∈ En and we are looking for the minimizer
of (CMD) (i.e., the maximal circles and moats lower bound). Let x∗ be the minimizer.
It is easy to see that for every i ∈ Vn we must have

∑n
j=1 xij = 2. Suppose this is not

the case for some i ∈ Vn and let S be the minimal element (with respect to inclusion)
of B containing node i. Then there is an edge ik with x∗ik > 0 and k ∈ S (otherwise
S /∈ B). We can set x∗ik = max{0, 2 −

∑
j �=k x

∗
ij} without violating any condition and

obtain a new solution having strictly less objective function value.
This proves that, for a nonnegative objective function, the best circles and moats bound
is equivalent to the subtour relaxation bound. Therefore, as noted above, this bound
can be determined in polynomial time making use of the ellipsoid method. It would be
interesting to design efficient heuristics providing good systems of circles and moats.

10.2.5 Computations

We have evaluated the above bounds for our set of sample problems. Except for the case
of the assignment bound all bounds were computed exactly. Because of the running time
O(n3) of assignment algorithms for complete graphs, the assignment bound was only
computed for the subgraph consisting of the Delaunay graph and the 10 nearest neighbor
subgraph. We tested several cases and always found that the assignment computed for
this subgraph had the same value as the minimum weight assignment computed for the
complete graph.
Table 10.5 displays the qualities of the computed bounds relative to the best known
upper bounds. I.e., if cL is a lower bound, we define its quality as 100 · (cL − cU )/cU
where cU is the length of the best known tour as given in Table 3.1. Best qualities in
each row are marked.
The table gives a clear picture. The 1-tree and the related geometric bound perform
best, providing on the average bounds about 10% below the optimal objective function
value. The 2-neighbor and the assignment bounds are significantly worse. In some
cases, however, the 2-neighbor bound is better than the tree bounds. Therefore, since it
is quickly computed, it is worthwhile to be also used as a fast lower bounding procedure
accompanying the tree bounds.
We end this section with an impression of the necessary CPU times. Figure 10.6 shows
the running times for minimum spanning tree, the simple 1-tree and the 2-neighbor
configuration bounding procedures. Running times are given without the necessary
preprocessing times for computing the Delaunay graph. The figure shows that very
little additional time is needed and that CPU times are well predictable.
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Problem MST 1-tree Geometric 2-neighbor Assignment

d198 25.61 18.16* 17.08 37.31 32.78
lin318 9.94 9.21 8.78* 18.91 35.17
fl417 14.27 11.98 10.37* 30.66 35.50
pcb442 8.70 7.72 7.82 6.84* 7.78
u574 13.08 12.14* 12.25 17.03 20.97
p654 14.97 12.99 11.58* 29.11 32.14

rat783 7.73 7.44* 7.47 9.33 15.47
pr1002 13.46 12.82 12.66* 15.07 17.23
u1060 12.78 11.72* 11.96 16.49 18.15

pcb1173 9.63 9.20* 9.25 8.58 10.18
d1291 7.62 5.08* 5.11 16.98 19.83
rl1323 11.18 10.82 10.43* 18.93 23.32
fl1400 15.20 12.53* 12.90 31.01 39.40
u1432 4.57 4.38 4.39 3.39* 3.42
fl1577 12.62 12.00 10.67* 23.34 24.77
d1655 8.99 6.62* 6.64 12.15 13.73
vm1748 12.46 12.16* 12.20 14.40 17.01
rl1889 12.09 11.85 11.83* 18.71 22.87
u2152 4.16 4.00* 4.00* 7.80 12.10
pr2392 9.46 9.35 9.33* 10.66 15.49
pcb3038 7.55 7.42 7.42 6.69* 8.00
fl3795 12.18 10.33* 10.86 21.39 19.23
fnl4461 7.73 7.65* 7.66 6.83 9.97
rl5934 7.24 7.17 7.09* 13.64 17.76

Average 10.97 9.78 9.57 16.47 19.68

Table 10.5 Quality of lower bounding procedures
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Figure 10.6 CPU times for tree lower bounds
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Figure 10.7 CPU times for assignment lower bounds

Figure 10.7 shows the running times for our implementation of the Hungarian method
for solving assignment problems. Running time, even for the sparse graphs, are con-
siderable. Therefore, the assignment bound is, not only because of its weakness, of no
interest for practical computations.

10.3 Lagrangean Relaxation

The 1-tree and the 2-neighbor bounds discussed in the previous sections are useful for
practical purposes, but are quite weak as the experiments have exhibited. In this section
we discuss how these bounds can be improved by fairly simple means requiring only little
additional implementational effort.
Before putting this bound improvement into a proper theoretical context, we will
describe an intuitive approach. In a tour exactly two edges are incident to each
node. If we associate with each node i some weight πi and use modified edge weights
c′ij = cij + πi + πj then the length of every tour is increased by 2 ·

∑n
i=1 πi. Hence

the relative order of the tours with respect to their length remains unchanged. If we
compute lower bounds using the new weights and subtract 2 ·

∑n
i=1 πi we obtain lower

bounds for the original problem. Therefore we can use the node weights to make nodes
more or less attractive to try, for example, to approach the satisfaction of the degree
constraints in 1-tree computations. Nodes having degree 1 in the current 1-tree should
become more attractive whereas edges to nodes with high degree should receive larger
weight. Simple examples show already that bounds can indeed be improved this way.
This intuitive idea is exactly reflected in Lagrangean relaxation approaches to the TSP.
We will first describe the general method.
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10.3.1 The General Approach

One of the most common approaches for obtaining bounds on the optimal objective
function value of an integer linear program is the method of Lagrangean relaxation.
Let the following integer linear programming problem be given.

z∗ := min cTx
Ax = b

Bx = d(P)
x ≥ 0
x integer.

For any y the following integer linear programming problem provides a lower bound for
the minimal value z∗ of (P).

L(y) := min cTx + (d−Bx)T y

Ax = b

x ≥ 0(Dy)
x integer.

The lower bound property can easily be seen since every feasible solution for (P) is
also feasible for (Dy) with the same objective function value. Note that, since y is not
restricted in sign, we could as well use the objective function cTx + (Bx− d)T y. The
vector y is called vector of Lagrange multipliers. The best such lower bound is then
given by solving the so-called Lagrangean dual problem

(LD) u∗ := max
y
L(y)

i.e., by finding the maximum of the function L.
The function L is piecewise linear and concave (and hence nondifferentiable). A suit-
able method for maximizing L is subgradient maximization. A vector d is called
subgradient of L at x, if dT (y − x) ≥ L(y) − L(x) for all y.
Suppose x∗ is the minimizer of Dy∗ for some vector of Lagrange multipliers y∗. Then
u∗ = d−Bx∗ is a subgradient of L at y∗ as is seen from

L(y∗ + h) − L(y∗) ≤ cTx∗ + (d−Bx∗)T (y∗ + h) − cTx∗ − (d−Bx∗)T y∗

= (d−Bx∗)Th

= hTu∗, for all h.

Hence solving problem Dy for some y, at the same time provides a subgradient of L at
y.
The subgradient method is an iterative method which at a given point yk computes
the next iterate yk+1 by

yk+1 = yk + λkd
k,
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where dk is a subgradient of L at yk and λk is a suitable step length.
If L is bounded from above and if the step lengths satisfy both limk→∞ λk = 0 and∑∞

k=0 λk = ∞, then the method converges to the maximum of L (Polyak (1978)).
It turned out in practice that the step length formula above leads to very slow con-
vergence. So the requirement

∑∞
k=0 λk = ∞ is usually dropped and there are several

formulas for computing the step length leading to satisfactory convergence in practical
applications. A widely used formula is e.g.,

λk = α · U − L(yk)
||dk|| ,

where U is an upper bound on L, and 0 < α < 2 is some constant which is periodically
decreased. The method is stopped as soon as there is no more significant increase in
the bound.
Clearly, the quality of the bound provided by the Lagrangean dual depends on the
choice of the constraint set Bx = d to be relaxed. This also influences the complexity
of the Lagrangean subproblems to be solved for each multiplier set y.
Consider the following series of problems.

z∗ := min
x

{cTx | Ax = b, Bx = d, x ≥ 0, x integer }(P)

z∗LP := min
x

{cTx | Ax = b, Bx = d, x ≥ 0}(PLP)

z∗D := max
u,v

{dTu+ bT v | uTB + vTA ≤ cT }

u∗D := max
u

{dTu+ max
v

{bT v | vTA ≤ cT − uTB}}

u∗LP := max
u

{dTu+ min
x

{(cT − uTB)x | Ax = b, x ≥ 0}}

u∗ := max
u

{dTu+ min
x

{(cT − uTB)x | Ax = b, x ≥ 0, x integer }}(LD)

In general we have z∗ ≥ z∗LP = z∗D = u∗D = u∗LP ≤ u∗.
In the special case where {x | Ax = b, x ≥ 0} is an integer polyhedron (i.e., has only
integer vertices), we have u∗ = u∗LP = z∗LP . In this case, the value of the Lagrangean
dual is equal to the value of the linear programming relaxation (PLP) of the integer linear
program (P). Moreover, as noted in Schrijver (1986), if we can solve min{(cT−uTB)x |
Ax = b, x ≥ 0} in polynomial time for each u, then we can also solve (LD) in polynomial
time and we can directly apply LP techniques on (PLP) to compute u∗. But, even
though (LD) might be solvable in polynomial time, this fact might not be exploitable
in practice, especially when larger problems have to be solved. Therefore, for each
choice of Lagrangean relaxation one has to think about the best way for computing or
approximating u∗.
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For convenience we have used equation systems for both the relaxed and the maintained
constraints. Treating inequality systems does not cause any problems. If inequalities
(“≥”) are relaxed then their corresponding Lagrange multipliers must be nonnegative.
We will now show that 1-tree and 2-neighbor relaxations are particular applications of
the general method for the TSP.

10.3.2 Lagrangean Relaxation with 1-Trees

In section 2.3 we have given an integer linear programming formulation of the TSP.
For the purposes of this chapter we write this formulation in a different, but equivalent
form.

c∗ := min
∑

ij∈En

cijxij

n∑

j=1

xij = 2, for i ∈ Vn \ {1},

n∑

j=1

x1j = 2,

∑

ij∈En

xij = n,

x(C) ≤ |C| − 1, for all cycles C in {2, 3, . . . , n},
xij ∈ {0, 1}, for all ij ∈ En.

If we now relax the first system of equations and associate multipliers πi with the nodes,
we obtain the following relaxation. For convenience we also define π1 and set it to 0.

L(π) := min −2
n∑

i=1

πi +
∑

ij∈En

(cij + πi + πj)xij

n∑

j=1

x1j = 2,

∑

ij∈En

xij = n,

x(C) ≤ |C| − 1, for all cycles C in {2, 3, . . . , n},
xij ∈ {0, 1}, for all ij ∈ En.

It is known that the condition xij ∈ {0, 1}, for all ij ∈ En, is not necessary in this
formulation because the system of linear equations and inequalities describes an integral
polyhedron whose vertices are exactly the incidence vectors of 1-trees. Therefore, due to
the observations above, the value of the Lagrangean dual based on 1-trees is equivalent
to the lower bound provided by the subtour elimination relaxation defined in 10.1.2.
Since feasible solutions of the integer programm are exactly 1-trees with special node 1,
the relaxation can be rewritten as follows.
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L(π) := min
∑

ij∈En

cijxij +
n∑

i=1

πi

( n∑

j=1

xij − 2
)

x is incidence vector of a 1-tree .

Determining L(π) for a given π amounts to computing a 1-tree with respect to the
modified edge weights cij+πi+πj and subtracting 2

∑n
i=1 πi. According to the preceding

section, the minimum 1-tree readily supplies a subgradient as follows. Let δi be the
degree of node i in the minimum 1-tree. Then the vector (δ1 − 2, δ2 − 2, . . . , δn − 2) is
a subgradient of L at π.
Held & Karp (1970,1971) describe the first algorithm for finding the maximum of
L, and we therefore call the best 1-tree bound also Held-Karp bound. There are
several variations concerning the choice of initial step sizes and update of step sizes
(Helbig-Hansen & Krarup (1974), Smith & thompson (1977), Volgenant &

Jonker (1982), and Balas & Toth (1985)). Based on these references and on own
experiments we used the following implementation.

procedure 1tree bound

(1) Let τ be the initial step length, λ a decrement factor for the step length, and m
the number of iterations.

(2) Set t1 = τ , π1
i = 0 for every node i, and k = 1.

(3) As long as k ≤ m perform the following steps.

(3.1) Compute a minimum spanning tree with respect to the edge weights cij +
πi + πj .

(3.2) Compute the best 1-tree obtainable from this spanning tree (section 10.2).

(3.3) Define the vector dk by dk
i = δi − 2, where δi is the degree of node i in the

1-tree computed in Step (3.2).

(3.4) For every node i set

πk+1
i = πk

i + tk(0.7dk
i + 0.3dk−1

i ).

(3.5) Set tk+1 = λtk and increment k by 1.

(4) Return the best bound computed.

end of 1tree bound

Differences to straightforward realizations are, that the direction of the subgradient step
is a convex combination of the current and the preceding subgradient, that the direction
vector is not normalized, and that the special node for the 1-tree computations is not
fixed. In theory, the same optimal value of the Lagrange dual is attained whatever node
is fixed. Actually, it is even incorrect to have varying nodes because the underlying op-
timization problem changes. But practical experiments have shown that better bounds
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are obtained this way and that it pays off to spend the additional running time for
computing various 1-trees.
Some authors propose to update the multipliers according to the formula

πk+1
i = πk

i + tk(U − L(πk))
dk

i

||dk||

where U is an estimate for the optimal solution and L(πk) is the currently computed
lower bound. We found that convergence is faster with this formula, but bounds are
inferior.
A general guideline for the performance is the following. If λ is close to 1 (say 0.98–0.995)
convergence is slow, but usually better bounds are reached. For values of λ between
0.95 and 0.97 faster convergence is achieved yielding reasonable bounds. Smaller values
of λ lead to considerably inferior bounds. Instead of fixing the number of iterations one
can stop, if no significant progress is observed any more.
Since no line search is performed it is not guaranteed that each iteration step improves
the bound. In fact, the behaviour shown in Figure 10.8 can be observed. This figure
displays the development of the bounds during application of the above subgradient
method to problem pcb442 for 150 iterations.
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47000

48000
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51000

Figure 10.8 A run of the subgradient algorithm

The best bound obtained is 50459. In general, the evolution of the lower bounds does
not have to be as smooth as in this example. Depending on the problem instance the
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use of non-fixed special nodes can have the consequence that the bounds alternate even
at the end of the procedure. But, our emphasis does not lay on nice convergence but
on good bounds. Hence this is tolerable.
Concerning running time we are in a bad situation. Since edge weights are arbitrary
we can compute the best tree in Step (3.1) only in time O(n2) and the best 1-tree in
Step (3.2) in time O(kn) where k is the number of leaves of the spanning tree.
To speed up the procedure we compute trees in sparse subgraphs. This has the con-
sequence that the computed bound may not be valid for the true problem. Only if
the subgraph contains an optimal tour for the original problem, the bound is valid.
Of course, this cannot be verified. We therefore proceeded as follows for our sample
problems.

procedure fast 1treebound

(1) Construct the subgraph consisting of the 10 nearest neighbor edges and the edges
of the Delaunay graph.

(2) Perform the subgradient algorithm only in this graph to compute an approximate
lower bound.

(3) Compute a minimum 1-tree in the complete graph using the multipliers of the
final iteration in (2).

end of fast 1treebound

Problem Subgraph Subgraph Final
150 It. 300 It. iteration

d198 6.92 5.31 5.65
lin318 2.34 0.61 0.61
fl417 6.37 3.31 3.50
pcb442 2.55 0.63 0.63
u574 2.62 0.55 0.57
p654 10.00 4.19 4.23

rat783 2.13 0.40 0.41
pr1002 3.40 0.99 0.99
u1060 3.10 0.87 0.87

pcb1173 2.19 0.97 0.99
d1291 2.37 1.48 1.70
rl1323 1.98 1.59 1.72
fl1400 10.15 2.42 6.38
u1432 3.31 0.46 0.47
fl1577 6.19 5.34 5.40
d1655 2.34 1.24 1.24
vm1748 2.72 1.37 1.37
rl1889 2.29 1.61 1.74
u2152 2.08 0.55 0.60
pr2392 2.52 1.23 1.23
pcb3038 2.44 0.84 0.84
fl3795 7.13 4.46 4.61
fnl4461 2.49 0.58 0.58
rl5934 1.63 1.20 1.23

Average 3.80 1.76 1.98

Table 10.9 Results of Lagrangean relaxation based on 1-trees
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Running time is now O(n logn) + O(kn) for each iteration in Step (2) where k is the
number of leaves of the spanning tree and O(n2) for the final step. Due to this final
optimization a valid lower bound is determined.
Table 10.9 documents a sample run with this fast bounding procedure where we have
set λ = 0.98 and m = 300. As initial step length we choose 10 · (U − T )/n where U
is the tour length shown in Table 6.17 for the Christofides starting tour and T is the
1-tree bound listed in Table 10.5.
We give the bounds obtained from the subgraph optimization after 150 and after 300
iterations and the bound obtained in the final 1-tree computation. The table verifies
that our approach is indeed reasonable. The final iteration changes the bound only
marginally. In practical applications we can safely omit the final step and assume that
the bound determined in the first phase is correct.
Respective CPU times are given in Figure 10.10. They do not increase smoothly because
the running time of Kruskal’s algorithm depends on the distribution of edge lengths for
the respective subgraphs. This distribution influences the number of edges that are
checked for entering the spanning tree. A uniform distribution usually leads to earlier
termination.
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Figure 10.10 CPU times for Lagrangean relaxation (1-tree)

Methods for finding the optimum of the Lagrangean dual based on 1-trees are not limited
to subgradient approaches. One further iterative method is, e.g., dual ascent (Malik

& Fisher (1990)). As note above, a completely different way is to directly solve the
linear program corresponding to the subtour elimination relaxation.
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10.3.3 Lagrangean Relaxation with 2-Neighbor Configurations

We will now show that the 2-neighbor configurations are related to the fractional 2-
matching relaxation. It is known (Balinski (1970)) that the polytope defining the frac-
tional 2-matching problem has only vertices whose components have values in {0, 1

2 , 1}.
To treat 2-neighbor configurations we switch to (directed) arcs. We introduce variables
yij with the interpretation that yij = 1 if the arc from i to j is selected, and yij = 0
otherwise. We set also cij = cji and for notational convenience, we use variables yii in
the formulae (which then have to be ignored).
Consider the following integer programming problem

min
1
2

n∑

i=1

n∑

j=1

cijyij

n∑

j=1

yij = 2, for all i ∈ Vn,

n∑

j=1

yji = 2, for all i ∈ Vn,(F)

yij ∈ {0, 1}, for all i, j ∈ Vn.

If y∗ is a feasible solution of this problem then x∗ defined via x∗ij = 1
2
(y∗ij + y∗ji) is

a feasible solution of the fractional 2-matching problem. If x∗ with x∗ij ∈ {0, 1
2 , 1} is

feasible for the latter problem then y∗ij = y∗ji = x∗ij is feasible for the new problem.
If we formulate a Lagrangean relaxation approach for problem (F) by relaxing the second
set of constraints we obtain the following problem

L(π) := min
1
2

n∑

i=1

n∑

j=1

cijyij +
n∑

i=1

πi

( n∑

j=1

yji − 2
)

n∑

j=1

yij = 2, for all i ∈ Vn,

yij ∈ {0, 1}, for all i, j ∈ Vn.

Evaluating L(π) for a given π amounts to computing the minimum 2-neighbor configura-
tion for modified edge weights. The new edge weights c′ij are obtained as c′ij = 1

2cij +πj

(note that in general c′ij �= c′ji). Solving the Lagrangean dual, i.e., maximizing L
gives the fractional 2-matching bound. Concerning the implementation of a subgradi-
ent method, the same remarks as for the 1-tree relaxation apply.
Running time is O(n2) for each iteration of the subgradient method. To speed up
computations,we optimize in subgraphs only. If the subgraph hasm edges each iteration
takes time O(m) and the final iteration takes time O(n2) to yield a valid lower bound.
We ran experiments using the 10 nearest neighbor subgraph augmented by the edges of
the Delaunay graph. In this case each iteration runs in time O(n). Table 10.11 shows
the results. Again, the final step alters the bounds only slightly and the approach is
verified to be reasonable.
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Problem Subgraph Subgraph Final
150 It. 300 It. iteration

lin318 7.50 7.43 7.43
fl417 22.68 22.50 24.37
pcb442 1.63 1.34 1.34
u574 7.28 7.18 7.18
p654 18.39 17.53 17.71

rat783 2.83 2.70 2.70
pr1002 7.09 7.01 7.02
u1060 6.74 6.51 6.51

pcb1173 2.35 2.27 2.27
d1291 7.60 7.54 7.54
rl1323 9.37 9.27 9.28
fl1400 16.72 15.52 15.54
u1432 1.45 0.88 0.88
fl1577 19.48 19.28 19.28
d1655 5.37 5.24 5.24
vm1748 4.58 4.46 4.49
rl1889 9.23 9.11 9.12
u2152 4.45 4.22 4.22
pr2392 4.99 4.87 4.87
pcb3038 1.77 1.67 1.67
fl3795 16.09 15.49 15.49
fnl4461 1.90 1.82 1.82
rl5934 5.92 5.86 5.86

Average 8.79 8.54 8.63

Table 10.11 Results of Lagrangean relaxation based on 2-neighbors
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Figure 10.12 CPU times for Lagrangean relaxation (2-neighbor)
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CPU time statistics show that time per iteration is considerably less for the 2-neighbor
relaxation than for the 1-tree relaxation. Therefore, if one observes the development
of the bounds over time, for some problems during a certain first time period the 2-
neighbor bound will we above the 1-tree bound. In the end, according to the theoretical
results, the 1-tree bound will be better.
Lagrangean relaxations based on perfect 2-matchings are considered in Smith, Meyer

& Thompson (1990).

10.3.4 Multiplier Heuristics

Every assignment of node multipliers can be used to determine a lower bound using
1-trees or 2-neighbor configurations. The simple lower bounds implicitly use zero multi-
pliers, the subgradient method adapts the multipliers starting with zero multipliers. In
this section we briefly address the question of using a heuristic for guessing reasonable
multipliers.
To get an impression on how the πi values look like we show in Figure 10.13 near optimal
multipliers for the 1-tree relaxation for problem pcb442 giving the lower bound 50490.
Figure 10.14 displays multipliers for the 2-neighbor relaxation giving a lower bound of
50099.

Figure 10.13 Near optimal 1-tree multipliers for pcb442

Note that one can add the same constant to all multipliers without affecting the lower
bounds obtained by the relaxation. We have therefore subtracted the maximum πi
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from all multipliers. Now all values are nonpositive and the largest one is zero. Radii
of circles in the figures are the complemented πi values.
The only hint for estimating reasonable multipliers is that apparently isolated nodes
have large negative multipliers whereas the other nodes have multipliers related to their
nearest neighbor distance. This corresponds to the intuitive explanation that isolated
nodes have to be made more attractive since otherwise they would become leaves of the
1-tree.

Figure 10.14 Near optimal 2-neighbor multipliers for pcb442

We have implemented three variants of multiplier heuristics which also run fast. Let
d1(i) be the distance to the nearest neighbor of i and d2(i) be the distance to the second
nearest neighbor. The variants are

(1) Set πi = −0.5d1(i).

(2) Set πi = −0.5d2(i).

(3) Set πi = −0.25(d1(i) + d2(i)).

We have seen in preceding chapters that nearest neighbor distances for Euclidean prob-
lems can be computed very efficiently. For the general problem we need time O(n2) to
compute these multipliers. In any case, eve if multipliers can be computed fast, we have
to spend time O(n2) for proving the validity of the bounds.
Table 10.15 displays the results obtained with Variant 2 for the 1-tree and the 2-neighbor
relaxation which are significantly better than the simple bounds of Table 10.5. The other
two variants performed worse, so their results are not documented.
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Problem 1-tree 2-nn
d198 15.96 26.76

lin318 6.83 12.32
fl417 12.78 26.52
pcb442 4.53 2.51
u574 9.11 10.02
p654 10.70 19.78

rat783 5.28 5.30
pr1002 9.13 9.36
u1060 8.28 9.24

pcb1173 5.56 4.19
d1291 4.53 9.17
rl1323 9.69 12.79
fl1400 9.23 19.36
u1432 2.96 2.26
fl1577 11.69 20.73
d1655 5.01 6.91
vm1748 7.48 7.66
rl1889 10.33 12.36
u2152 3.18 5.57
pr2392 6.92 7.49
pcb3038 4.34 3.34
fl3795 8.91 16.41
fnl4461 4.57 3.70
rl5934 6.31 8.56

Average 7.64 10.93

Table 10.15 Results of multiplier heuristics

Further aspects of Lagrangean relaxation for the TSP are discussed in Shmoys &

Williamson (1990) and Smith, Meyer & Thompson (1990).

10.4 Comparison of Lower Bounds

We have seen that the optimal objective function value cT of the Lagrangean dual based
on 1-trees is the subtour elimination bound. The Lagrangean dual based on 2-neighbor
configurations gives the fractional 2-matching bound cN . Since the latter is itself a
relaxation of the subtour relaxation we get that cN ≤ cT . Normally, we have cN < cT .
For practical problems the difference between the two bounds will be considerable.
To examine how well our subgradient algorithm approximates the optima cN and cT we
have also computed the exact values using LP techniques. We used an branch and cut
code for solving TSPs optimally (Jünger, Reinelt & Thienel (1993)) to compute
these bounds for all of our sample problems. Table 10.16 displays the results and shows
that in some cases (e.g., d198, p654, or rl1323) the 1-tree bound computed in Table 10.9
misses the optimal 1-tree bound by some percent. Having a look at such problems, one
realizes that they are built of clusters of points. For such instances, our subgradient
method has problems in approaching the best bound. We can only overcome this by
enlarging the decrement factor and hence coming closer to the theoretically required
formula for obtaining convergence to the optimum of the Lagrangean dual. For example,
if we use λ = 0.995, then for problem d198 we obtain the lower bound 14769 after 800
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iterations. If the points are more or less uniformly distributed we have no difficulties in
finding rather close approximations to the best bound.

Problem Fractional Subtour
2-Matching elimination

d198 11793 15712
lin318 38964 41889
fl417 8961 11790
pcb442 50104 50500
u574 34256 36714
p654 28584 34596

rat783 8568 8773
pr1002 240878 256766
u1060 209529 222651

pcb1173 55600 56351
d1291 46971 50209
rl1323 245156 265815
fl1400 16783 19783
u1432 151676 152535
fl1577 17871 21886
d1655 58876 61544
vm1748 321552 332061
rl1889 287698 311705
u2152 61464 63859
pr2392 359620 373490
pcb3038 135391 136588
fl3795 24289 28478
fnl4461 179252 181570
rl5934 521629 548471

Table 10.16 Exact values of relaxations

Finally, in Table 10.17, we give the average qualities of all relaxations discussed in this
chapter taking only those 19 sample instances into account where true optimal solutions
are known.

Name of heuristic Average deviation
from optimum

Subtour Elimination 0.78
Lagrange 1-Tree bound (final step) 1.54
Multiplier heuristic (1-Tree) 7.58
Fractional 2-Matching 7.70
Lagrange 2-NN bound (final step) 7.72
Geometric bound 9.70
Simple 1-tree 9.93
Multiplier heuristic (2-NN) 10.09
Minimum spanning tree 11.15
Simple 2-neighbors 15.69
Assignment 18.90

Table 10.17 Comparison with optimal solutions

The table shows that the fractional 2-matching bound is about 7% below the sub-
tour elimination bound. Our fast schemes to approximate the subtour bound and the
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fractional 2-matching bound perform fairly well on the average. Whereas the frac-
tional 2-matching bound is almost met by our heuristic, the subtour bound is missed
by about 1%. As we pointed out, we can improve the approximation by tuning the
parameters of the subgradient algorithm.
Multiplier heuristics improve the simple bounds considerably. If Delaunay graphs are
available, then at least the simple bound computations should be performed in any case.
The subgradient method used in this chapter is not the only way for attacking nondif-
ferentiable optimization problems. A more elaborate approach is the so-called bundle
method (Kiwiel (1989)). It is also based on subgradients, but in every iteration the
new direction is computed as a convex combination of several (10–20) previous subgra-
dients. Moreover, line searches are performed. In this sense, our approach is a simple
version of the bundle method keeping only a “bundle” of two subgradients (which are
combined in a fixed way) and not performing line searches.
Schramm (1989) considers an extension of this principle which combines the bundle
approach with trust-region methods. Whereas, in general, this algorithm outperforms
pure subgradient methods this is not the case for the 1-tree relaxation. Here performance
is similar.
Several further relaxations are available for the TSP. Among them are n-path relax-
ation or so-called additive bounding procedures. For information on further ap-
proaches see Houck, Picard, Queyranne & Vemuganti (1980), Balas & Toth

(1985), Maculan & Salles (1989). Carpaneto, Fischetti & Toth (1989), and
Fischetti & Toth (1992).


